Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107365
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorWang, Jen_US
dc.creatorYang, Hen_US
dc.creatorLiu, Zen_US
dc.creatorFan, Len_US
dc.creatorYan, Wen_US
dc.creatorQiu, Den_US
dc.creatorFu, MWen_US
dc.date.accessioned2024-06-18T09:02:13Z-
dc.date.available2024-06-18T09:02:13Z-
dc.identifier.issn1359-8368en_US
dc.identifier.urihttp://hdl.handle.net/10397/107365-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectCellular structureen_US
dc.subjectLaser powder-bed fusionen_US
dc.subjectMechanical performanceen_US
dc.subjectMedium-entropy alloyen_US
dc.subjectStrength-ductility synergyen_US
dc.titleCompositional regulation in additive manufacturing of precipitation-hardening (CoCrNi)₉₄Ti₃Al₃ medium-entropy superalloy : cellular structure stabilization and strength enhancementen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume281en_US
dc.identifier.doi10.1016/j.compositesb.2024.111570en_US
dcterms.abstractHigh or medium-entropy alloys that feature high thermal stability and excellent oxidation resistance are promising candidates for elevated temperature applications. The rapid softening of monolithic high or medium-entropy alloys with single face-centered cubic structure at elevated temperatures, however, is a main weakness. In this paper, we report new high strength γ′-hardened ((CoCrNi)94Ti3Al3)98Nb2 medium-entropy alloy through laser powder-bed fusion (L-PBF) followed by ageing. In particularly, the tensile strengths of the aged ((CoCrNi)94Ti3Al3)98Nb2 alloy at 20 °C and 700 °C can reach up to 1.93 GPa and 1.11 GPa, respectively, 112 % and 122 % stronger than the as-built CoCrNi alloy tested at the same condition. A new strengthening mechanism, i.e., elemental segregation induced the cellular structure stabilization, in tandem with other hierarchical microstructure features, including ultrafine γ′ precipitates, dense twin boundaries, and other types of crystallized defects, co-contribute to the superb tensile strength at room and elevated temperatures. Such a simple alloy design and processing strategy outlines a guideline for designing novel multicomponent alloys and/or composites with superior microstructural stability and mechanical response at room and elevated temperatures.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationComposites. Part B, Engineering, 15 July 2024, v. 281, 111570en_US
dcterms.isPartOfComposites. Part B, Engineeringen_US
dcterms.issued2024-07-15-
dc.identifier.scopus2-s2.0-85193452222-
dc.identifier.eissn1879-1069en_US
dc.identifier.artn111570en_US
dc.description.validate202406 bcch-
dc.identifier.FolderNumbera2828a-
dc.identifier.SubFormID48510-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Research and Development Program of China; National Natural Science Foundation of China; Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-07-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-07-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

9
Citations as of Jun 30, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.