Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107355
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorYang, M-
dc.creatorZeng, Y-
dc.creatorDu, Q-
dc.creatorSun, H-
dc.creatorYin, Y-
dc.creatorYan, X-
dc.creatorJiang, M-
dc.creatorPan, C-
dc.creatorSun, D-
dc.creatorWang, Z-
dc.date.accessioned2024-06-17T06:55:20Z-
dc.date.available2024-06-17T06:55:20Z-
dc.identifier.issn2192-8606-
dc.identifier.urihttp://hdl.handle.net/10397/107355-
dc.language.isoenen_US
dc.publisherWalter de Gruyter GmbHen_US
dc.rights© 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Yang, Meng, Zeng, Yijun, Du, Qingyuan, Sun, Haoyang, Yin, Yingying, Yan, Xiantong, Jiang, Mengnan, Pan, Chin, Sun, Dazhi and Wang, Zuankai. "Enhanced radiative cooling with Janus optical properties for low-temperature space cooling" Nanophotonics, vol. 13, no. 5, 2024, pp. 629-637 is available at https://doi.org/10.1515/nanoph-2023-0641.en_US
dc.subjectElectrospinningen_US
dc.subjectJanus optical propertyen_US
dc.subjectRadiative coolingen_US
dc.subjectSpace coolingen_US
dc.subjectSurface coolingen_US
dc.titleEnhanced radiative cooling with Janus optical properties for low-temperature space coolingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage629-
dc.identifier.epage637-
dc.identifier.volume13-
dc.identifier.issue5-
dc.identifier.doi10.1515/nanoph-2023-0641-
dcterms.abstractPassive daytime radiative cooling that could provide sub-ambient cooling emerges as a promising technology to reduce household energy consumption. Nonetheless, prevailing studies are predominantly focused on surface cooling, often overlooking its adaptability to enclosed spaces with active cooling technologies. Here we present a multilayer radiative cooling film (J-MRC) with Janus optical properties in the mid-infrared region, consisting of the nanoporous polyethylene films, the polyethylene oxide film, and silver nanowires. The top side of the J-MRC functions as a conventional radiative cooling material to supply sub-ambient surface cooling, while the bottom side with low mid-infrared emissivity transfers limited heat via thermal radiation to the low-temperature enclosures. Our experiments validate that the J-MRC possesses an enhanced space cooling performance in comparison to the conventional radiative cooling film. This work provides a valuable design concept for radiative cooling materials, thereby expanding their practical scenarios and contributing to reduce the carbon emission.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNanophotonics, Mar. 2024, v. 13, no. 5, p. 629-637-
dcterms.isPartOfNanophotonics-
dcterms.issued2024-03-
dc.identifier.scopus2-s2.0-85183011760-
dc.identifier.eissn2192-8614-
dc.description.validate202406 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2825aen_US
dc.identifier.SubFormID48501en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
10.1515_nanoph-2023-0641.pdf1.99 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

7
Citations as of Jun 30, 2024

Downloads

1
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

2
Citations as of Jun 21, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.