Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107351
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorWang, H-
dc.creatorTao, J-
dc.creatorWu, Z-
dc.creatorWeiland, K-
dc.creatorWang, Z-
dc.creatorMasania, K-
dc.creatorWang, B-
dc.date.accessioned2024-06-17T06:55:19Z-
dc.date.available2024-06-17T06:55:19Z-
dc.identifier.urihttp://hdl.handle.net/10397/107351-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.rights© 2024 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication H. Wang, J. Tao, Z. Wu, K. Weiland, Z. Wang, K. Masania, B. Wang, Fabrication of Living Entangled Network Composites Enabled by Mycelium. Adv. Sci. 2024, 2309370 is available at https://doi.org/10.1002/advs.202309370.en_US
dc.subjectLiving compositesen_US
dc.subjectMechanical propertiesen_US
dc.subjectMyceliumen_US
dc.subjectPhase separationen_US
dc.titleFabrication of living entangled network composites enabled by myceliumen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1002/advs.202309370-
dcterms.abstractOrganic polymer-based composite materials with favorable mechanical performance and functionalities are keystones to various modern industries; however, the environmental pollution stemming from their processing poses a great challenge. In this study, by finding an autonomous phase separating ability of fungal mycelium, a new material fabrication approach is introduced that leverages such biological metabolism-driven, mycelial growth-induced phase separation to bypass high-energy cost and labor-intensive synthetic methods. The resulting self-regenerative composites, featuring an entangled network structure of mycelium and assembled organic polymers, exhibit remarkable self-healing properties, being capable of reversing complete separation and restoring ≈90% of the original strength. These composites further show exceptional mechanical strength, with a high specific strength of 8.15 MPa g.cm−3, and low water absorption properties (≈33% after 15 days of immersion). This approach spearheads the development of state-of-the-art living composites, which directly utilize bioactive materials to “self-grow” into materials endowed with exceptional mechanical and functional properties.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvanced science, First published: 13 March 2024, Early View, 2309370, https://doi.org/10.1002/advs.202309370-
dcterms.isPartOfAdvanced science-
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85187539449-
dc.identifier.eissn2198-3844-
dc.identifier.artn2309370-
dc.description.validate202406 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2825aen_US
dc.identifier.SubFormID48486en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusEarly releaseen_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Fabrication_Living_Entangled.pdf6.3 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

6
Citations as of Jun 30, 2024

Downloads

3
Citations as of Jun 30, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.