Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107348
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorYao, Wen_US
dc.creatorMeng, Ken_US
dc.creatorLi, Men_US
dc.creatorYang, Xen_US
dc.date.accessioned2024-06-17T06:55:17Z-
dc.date.available2024-06-17T06:55:17Z-
dc.identifier.issn1877-0533en_US
dc.identifier.urihttp://hdl.handle.net/10397/107348-
dc.language.isoenen_US
dc.publisherSpringer Dordrechten_US
dc.rights© The Author(s), under exclusive licence to Springer Nature B.V. 2023en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11228-023-00698-9.en_US
dc.subjectCalculus rulesen_US
dc.subjectGeneralized Mordukhovich criterionen_US
dc.subjectProjectional coderivativeen_US
dc.subjectRelative Lipschitz-like propertyen_US
dc.titleProjectional coderivatives and calculus rulesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume31en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1007/s11228-023-00698-9en_US
dcterms.abstractThis paper is devoted to the study of a newly introduced tool, projectional coderivatives, and the corresponding calculus rules in finite dimensional spaces. We show that when the restricted set has some nice properties, more specifically, it is a smooth manifold, the projectional coderivative can be refined as a fixed-point expression. We will also improve the generalized Mordukhovich criterion to give a complete characterization of the relative Lipschitz-like property under such a setting. Chain rules and sum rules are obtained to facilitate the application of the tool to a wider range of parametric problems.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSet-valued and variational analysis, Dec. 2023, v. 31, no. 4, 36en_US
dcterms.isPartOfSet-valued and variational analysisen_US
dcterms.issued2023-12-
dc.identifier.scopus2-s2.0-85175615392-
dc.identifier.eissn1877-0541en_US
dc.identifier.artn36en_US
dc.description.validate202406 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2823-
dc.identifier.SubFormID48480-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yao_Projectional_Coderivatives_Calculus.pdfPre-Published version830.85 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

48
Citations as of Apr 14, 2025

Downloads

2
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Jan 9, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.