Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107300
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Management-
dc.creatorLi, H-
dc.creatorGao, H-
dc.creatorSong, H-
dc.date.accessioned2024-06-13T07:07:46Z-
dc.date.available2024-06-13T07:07:46Z-
dc.identifier.issn0160-7383-
dc.identifier.urihttp://hdl.handle.net/10397/107300-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectDeep learningen_US
dc.subjectFine-grained sentiment analysisen_US
dc.subjectHybrid feature engineeringen_US
dc.subjectMultisource Internet big dataen_US
dc.subjectTourism demand forecastingen_US
dc.titleTourism forecasting with granular sentiment analysisen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle in author's file: Tourism demand forecasting using sentiment analysisen_US
dc.identifier.volume103-
dc.identifier.doi10.1016/j.annals.2023.103667-
dcterms.abstractGeneric sentiment calculations cannot fully reflect tourists' preferences, whereas fine-grained sentiment analysis identifies tourists' precise attitudes. This study forecasted visitor arrivals at two tourist attractions in China using Internet data from multiple sources. Empirical results indicate that 1) fine-grained sentiment analysis of online review data can substantially improve tourism demand models' forecasting performance; 2) combining multidimensional sentiment analysis–based online review data with search engine data outperforms search engine data in tourism demand prediction; and 3) fine-grained sentiment analysis–based online review data and search engine data maintain stable predictive power during times of uncertainty. © 2023 Elsevier Ltd-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAnnals of tourism research, Nov. 2023, v. 103, 103667-
dcterms.isPartOfAnnals of tourism research-
dcterms.issued2023-11-
dc.identifier.scopus2-s2.0-85174696623-
dc.identifier.eissn1873-7722-
dc.identifier.artn103667-
dc.description.validate202406 bcch-
dc.identifier.FolderNumbera2810en_US
dc.identifier.SubFormID48437en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-11-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-11-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

98
Last Week
10
Last month
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

45
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

45
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.