Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107217
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineering-
dc.creatorWang, B-
dc.creatorGuo, N-
dc.creatorKhan, FN-
dc.creatorAzad, AK-
dc.creatorWang, L-
dc.creatorYu, C-
dc.creatorLu, C-
dc.date.accessioned2024-06-13T01:04:39Z-
dc.date.available2024-06-13T01:04:39Z-
dc.identifier.isbn978-1-5090-6290-4 (Electronic)-
dc.identifier.isbn978-1-5090-6291-1 (Print on Demand(PoD))-
dc.identifier.urihttp://hdl.handle.net/10397/107217-
dc.description2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 31 July 2017 - 04 August 2017, Singaporeen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication B. Wang et al., "Extraction of temperature distribution using deep neural networks for BOTDA sensing system," 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 2017 is available at https://doi.org/10.1109/CLEOPR.2017.8118961.en_US
dc.subjectBrillouin optical time domain analyzer (BOTDA)en_US
dc.subjectDeep neural networks (DNN)en_US
dc.subjectTemperature extractionen_US
dc.titleExtraction of temperature distribution using deep neural networks for BOTDA sensing systemen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1109/CLEOPR.2017.8118961-
dcterms.abstractExtraction of temperature distribution using the method of deep neural networks (DNN) for Brillouin optical time domain analyzer (BOTDA) system is demonstrated experimentally. After appropriate training of DNN model, temperature distribution information along the fiber under test could be directly extracted from the experimentally obtained local Brillouin gain spectrums (BGS) using DNN without the need of calculating Brillouin frequency shift (BFS) and transforming it to temperature as conventional Lorentz curve fitting (LCF) method does. The results of Temperature extraction using DNN show comparable accuracy to that of using conventional LCF method.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn Proceedings of 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 31 July 2017 - 04 August 2017, Singapore-
dcterms.issued2017-
dc.identifier.scopus2-s2.0-85043449887-
dc.relation.conferencePacific Rim Conference on Lasers and Electro-Optics [CLEO-PR]-
dc.description.validate202403 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberEIE-0621en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHKPU; Project of Strategic Importanceen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS9612133en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Guo_Extraction_Temperature_Distribution.pdfPre-Published version608.68 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

3
Citations as of Jun 30, 2024

Downloads

1
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

11
Citations as of Jun 21, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.