Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107115
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorJu, Yen_US
dc.creatorJian, Men_US
dc.creatorDong, Jen_US
dc.creatorLam, KMen_US
dc.date.accessioned2024-06-13T01:04:00Z-
dc.date.available2024-06-13T01:04:00Z-
dc.identifier.isbn978-1-7281-8068-7 (Electronic)en_US
dc.identifier.isbn978-1-7281-8067-0 (USB)en_US
dc.identifier.isbn978-1-7281-8069-4 (Print on Demand(PoD))en_US
dc.identifier.urihttp://hdl.handle.net/10397/107115-
dc.description2020 IEEE International Conference on Visual Communications and Image Processing (VCIP), 01-04 December 2020, Macau, Chinaen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication Y. Ju, M. Jian, J. Dong and K. -M. Lam, "Learning Photometric Stereo via Manifold-based Mapping," 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP), Macau, China, 2020, pp. 411-414 is available at https://doi.org/10.1109/VCIP49819.2020.9301860.en_US
dc.subject3D reconstructionen_US
dc.subjectDeep learningen_US
dc.subjectManifold-based mappingen_US
dc.subjectPhotometric stereoen_US
dc.titleLearning photometric stereo via manifold-based mappingen_US
dc.typeConference Paperen_US
dc.identifier.spage411en_US
dc.identifier.epage414en_US
dc.identifier.doi10.1109/VCIP49819.2020.9301860en_US
dcterms.abstractThree-dimensional reconstruction technologies are fundamental problems in computer vision. Photometric stereo recovers the surface normals of a 3D object from varying shading cues, prevailing in its capability for generating fine surface normal. In recent years, deep learning-based photometric stereo methods are capable of improving the surface-normal estimation under general non-Lambertian surfaces, due to its powerful fitting ability on the non-Lambertian surface. These state-of-the-art methods however usually regress the surface normal directly from the high-dimensional features, without exploring the embedded structural information. This results in the underutilization of the information available in the features. Therefore, in this paper, we propose an efficient manifold-based framework for learning-based photometric stereo, which can better map combined high-dimensional feature spaces to low-dimensional manifolds. Extensive experiments show that our method, learning with the low-dimensional manifolds, achieves more accurate surface-normal estimation, outperforming other state-of-the-art methods on the challenging DiLiGenT benchmark dataset.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn Proceedings of 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP), 01-04 December 2020, Macau, China, p. 411-414en_US
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85099475959-
dc.relation.conferenceIEEE Visual Communications and Image Processing [VCIP]en_US
dc.description.validate202403 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberEIE-0112-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Scientific Instrument and Equipment Development Projects of China; National Natural Science Foundation of China; Taishan Young Scholars Program of Shandong Provinceen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS55022213-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Lam_Learning_Photometric_Stereo.pdfPre-Published version873.77 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

86
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

78
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

12
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

10
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.