Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107114
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineering-
dc.contributorMainland Development Office-
dc.creatorZhou, L-
dc.creatorChen, X-
dc.creatorChen, W-
dc.date.accessioned2024-06-13T01:03:59Z-
dc.date.available2024-06-13T01:03:59Z-
dc.identifier.isbn978-1-7281-6966-8 (Electronic)-
dc.identifier.isbn978-1-7281-6967-5 (Print on Demand(PoD))-
dc.identifier.urihttp://hdl.handle.net/10397/107114-
dc.description2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 07-09 December 2020, Hangzhou, Chinaen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication L. Zhou, X. Chen and W. Chen, "Deep Learning Based Attack on Phase-Truncated Optical Encoding," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Hangzhou, China, 2020 is available at https://doi.org/10.1109/NEMO49486.2020.9343452.en_US
dc.subjectLearning based attacksen_US
dc.subjectOptical encodingen_US
dc.subjectPhase truncationen_US
dc.titleDeep learning based attack on phase-truncated optical encodingen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1109/NEMO49486.2020.9343452-
dcterms.abstractWe apply the learning based attack to study the vulnerability of phase-truncated optical encoding scheme. By using a number of ciphertext-plaintext pairs to train a designed learning model, an attacker can effectively analyze the vulnerability of optical encryption scheme based on phase truncation. The learning based attacks for phase-truncated optical encoding can retrieve unknown plaintexts from the given ciphertexts, which can avoid the retrieval of security keys and the design of complex phase retrieval algorithms. It is demonstrated that the learning based attack can provide a promising approach for vulnerability analysis of phase-truncated optical cryptosystems.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn Proceedings of 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 07-09 December 2020, Hangzhou, China-
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85101260032-
dc.relation.conferenceInternational Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications [NEMO]-
dc.description.validate202403 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberEIE-0110en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (NSFC); Shenzhen Science and Technology Innovation Commission; National Research Foundation, Prime Minister’s Office, Singaporeen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS47527671en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Zhou_Deep_Learning_Based.pdfPre-Published version275.41 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

85
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

58
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.