Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107089
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorPhotonics Research Centreen_US
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorCai, Jen_US
dc.creatorGuo, Cen_US
dc.creatorLu, Cen_US
dc.creatorLau, APTen_US
dc.creatorChen, Pen_US
dc.creatorLiu, Len_US
dc.date.accessioned2024-06-13T01:03:48Z-
dc.date.available2024-06-13T01:03:48Z-
dc.identifier.urihttp://hdl.handle.net/10397/107089-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/en_US
dc.rightsThe following publication J. Cai, C. Guo, C. Lu, A. P. T. Lau, P. Chen and L. Liu, "Design Optimization of Silicon and Lithium Niobate Hybrid Integrated Traveling-Wave Mach-Zehnder Modulator," in IEEE Photonics Journal, vol. 13, no. 4, Aug. 2021, Art no. 2200206 is available at https://doi.org/10.1109/JPHOT.2021.3090768.en_US
dc.subjectHybride Mach-Zehnder modulatoren_US
dc.subjectLithium niobateen_US
dc.titleDesign optimization of silicon and lithium niobate hybrid integrated traveling-wave Mach-Zehnder modulatoren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume13en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1109/JPHOT.2021.3090768en_US
dcterms.abstractLithium niobate, dueto its strong electro-optic effect, is an excellent material for high-performance optical modulators. Hybrid integration of thin film lithium niobate and silicon photonic circuits makes it possible to fully exploit potentials of the two material systems. In this paper, we introduce a detailed design procedure for silicon and lithium niobate hybrid integrated modulator using coplanar line electrodes based on Mach-Zehnder interferometer push-pull configuration. A multiphysics model for the crossing section of the modulation section is proposed and analyzed. The results show that optimizing solely the VπL product would not lead to the best 3-dB bandwidth for a certain half-wave voltage due to the increased microwave losses. There exists an optimal ground-signal electrode gap value, which is about 8-9 µm for the present modulator structure. For these optimized structures, 3-dB bandwidths can reach 45 GHz and 137 GHz with half-wave voltages of 2 V and 4 V, respectively, for a lithium niobate waveguide total thickness of 600 nm and a ridge height of 200 nm.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE photonics journal, Aug. 2021, v. 13, no. 4, 2200206en_US
dcterms.isPartOfIEEE photonics journalen_US
dcterms.issued2021-08-
dc.identifier.scopus2-s2.0-85112190452-
dc.identifier.eissn1943-0655en_US
dc.identifier.artn2200206en_US
dc.description.validate202403 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberEIE-0020-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Research and Development Program; Guangdong Basic and Applied Basic Research Foundation; Science and Technology Planning Project of Guangdong Province; Natural Science Foundation of Guangdong Provinceen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS54962533-
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Guo_Design_Optimization_Silicon.pdf1.27 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

3
Citations as of Jun 30, 2024

Downloads

2
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

17
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

12
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.