Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107032
PIRA download icon_1.1View/Download Full Text
Title: Tunable flatband plasmonic quasi-bound states in the continuum based on graphene-assisted metasurfaces
Authors: Wang, Z 
Wang, Y 
Cheng, Z 
Qu, J 
Cui, M 
Huang, D 
Yu, C 
Issue Date: 18-Sep-2023
Source: Applied physics letters, 18 Sept 2023, v. 123, no. 12, 121703
Abstract: Bound states in the continuum (BICs) of plasmonic systems offer a powerful method for enhancing light–matter interaction at the nanoscale. The recent emergence of flatband quasi-BICs has alleviated the limitation of the incident angle of the excitation light on generating high-quality-factor (high-Q-factor) resonances, which makes it feasible to produce substantial near-field enhancement by focused light. However, the current works are limited to passive systems with fixed amplitude and Q-factor, hindering the dynamic tunability of light field enhancement. Here, we design a plasmonic metasurface integrated with monolayer graphene to achieve tunable flatband quasi-BICs. Under the illumination of a tightly focused transverse-magnetic wave, our simulations show that adjusting the chemical potential of graphene can increase Q-factor from 52.5 to 75.9 and improve absorption amplitude from 81% to 95%. These results pave the way for dynamically adjustable near-field enhancement with tightly focused light.
Publisher: AIP Publishing LLC
Journal: Applied physics letters 
ISSN: 0003-6951
EISSN: 1077-3118
DOI: 10.1063/5.0166140
Rights: © 2023 Author(s). Published under an exclusive license by AIP Publishing.
This is the accepted version of the publication.
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Zhuo Wang, Yue Wang, Zhi Cheng, Jiaqi Qu, Mingjie Cui, Dongmei Huang, Changyuan Yu; Tunable flatband plasmonic quasi-bound states in the continuum based on graphene-assisted metasurfaces. Appl. Phys. Lett. 18 September 2023; 123 (12): 121703 and may be found at https://doi.org/10.1063/5.0166140.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Wang_Tunable_Flat-band_Plasmonic.pdfPre-Published version2.15 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

13
Citations as of Jun 30, 2024

Downloads

5
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

2
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

2
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.