Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107023
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorCai, Sen_US
dc.creatorGuo, Cen_US
dc.creatorNiu, Ben_US
dc.creatorXie, Len_US
dc.creatorAddiego, Cen_US
dc.creatorWu, Den_US
dc.creatorWang, Pen_US
dc.creatorLau, SPen_US
dc.creatorHuang, Hen_US
dc.creatorPan, Xen_US
dc.date.accessioned2024-06-07T01:00:00Z-
dc.date.available2024-06-07T01:00:00Z-
dc.identifier.issn1616-301Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/107023-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.subjectDomain wallsen_US
dc.subjectFerroelectric capacitorsen_US
dc.subjectFerroelectric polarization switchingen_US
dc.subjectIn situ atomic-resolution STEMen_US
dc.subjectOxide heterojunctionsen_US
dc.titleIn situ observation of domain wall lateral creeping in a ferroelectric capacitoren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume33en_US
dc.identifier.issue50en_US
dc.identifier.doi10.1002/adfm.202304606en_US
dcterms.abstractAs a promising candidate for next-generation nonvolatile memory devices, ferroelectric oxide films exhibit many emergent phenomena with functional applications, making understanding polarization switching and domain evolution behaviors of fundamental importance. However, tracking domain wall motion in ferroelectric oxide films with high spatial resolution remains challenging. Here, an in situ biasing approach for direct atomic-scale observations of domain nucleation and sideways motion is presented. By accurately controlling the applied electric field, the lateral translational speed of the domain wall can decrease to less than 2.2 Å s−1, which is observable with atomic resolution STEM imaging. In situ observations on a capacitor structured PbZr0.1Ti0.9O3/La0.7Sr0.3MnO3 heterojunction demonstrate the unique creeping behavior of a domain wall under a critical electric field, with the atomic structure of the creeping domain wall revealed. Moreover, the evolution of the metastable domain wall forms an elongated morphology, which contains a large proportion of charged segments. Phase-field simulations unveil the competition between gradient, elastic, and electrostatic energies that decide this unique domain wall creeping and morphology variation. This work paves the way toward a complete fundamental understanding of domain wall physics and potential modulations of domain wall properties in real devices.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdvanced functional materials, 8 Dec. 2023, v. 33, no. 50, 2304606en_US
dcterms.isPartOfAdvanced functional materialsen_US
dcterms.issued2023-12-08-
dc.identifier.scopus2-s2.0-85168394981-
dc.identifier.eissn1616-3028en_US
dc.identifier.artn2304606en_US
dc.description.validate202406 bcch-
dc.identifier.FolderNumbera2783-
dc.identifier.SubFormID48319-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; The Hong Kong Polytechnic University; Department of Energy, Office of Basic Energy Sciencesen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2024-12-08en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2024-12-08
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

13
Citations as of Jun 30, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.