Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106881
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorYang, Yen_US
dc.creatorLam, KMen_US
dc.creatorDong, Jen_US
dc.creatorSun, Xen_US
dc.creatorJian, Men_US
dc.date.accessioned2024-06-07T00:58:36Z-
dc.date.available2024-06-07T00:58:36Z-
dc.identifier.isbn978-1-5106-4364-2en_US
dc.identifier.isbn978-1-5106-4365-9 (electronic)en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/106881-
dc.descriptionInternational Workshop on Advanced Imaging Technology 2021 (IWAIT 2021), 2021, Online Onlyen_US
dc.language.isoenen_US
dc.publisherSPIE - International Society for Optical Engineeringen_US
dc.rights© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.en_US
dc.rightsThe following publication Yuting Yang, Kin-Man Lam, Junyu Dong, Xin Sun, and Muwei Jian "Super-resolution on remote sensing images", Proc. SPIE 11766, International Workshop on Advanced Imaging Technology (IWAIT) 2021, 1176615 (13 March 2021) is available at https://doi.org/10.1117/12.2590197.en_US
dc.titleSuper-resolution on remote sensing imagesen_US
dc.typeConference Paperen_US
dc.identifier.volume11766en_US
dc.identifier.doi10.1117/12.2590197en_US
dcterms.abstractHigh-resolution ocean remote sensing images are of vital importance in the research field of ocean remote sensing. However, the available ocean remote sensing images are composed of averaged data, whose resolution is lower than the instant remote sensing images. In this paper, we propose a very deep super-resolution learning model for remote-sensing image super-resolution. In our research, we target satellite-derived sea surface temperature (SST) images, a typical kind of ocean remote sensing image, as a specific case study of super-resolution on remote sensing images. In this paper, we propose a novel model architecture based on the very deep super-resolution (VDSR) model, to further enhance its performance. Furthermore, we evaluate the peak signal-to-noise ratio (PSNR) and perceptual loss of the model trained on the natural images and SST frames. We designed and applied our model to the China Ocean SST database, the Ocean SST database, and the Ocean-Front databases, all containing remote sensing images captured by advanced very high resolution radiometers (AVHRR). Experimental results show that our model performs better than the state-of-the-art models on SST frames.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of SPIE : the International Society for Optical Engineering, 2021, v. 11766, 1176615en_US
dcterms.isPartOfProceedings of SPIE : the International Society for Optical Engineeringen_US
dcterms.issued2021-
dc.identifier.scopus2-s2.0-85103277844-
dc.relation.conferenceInternational Workshop on Advanced Imaging Technology [IWAIT]en_US
dc.identifier.eissn1996-756Xen_US
dc.identifier.artn1176615en_US
dc.description.validate202405 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberEIE-0081-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS53438951-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Yang_Super-Resolution_Remote_Sensing.pdfPre-Published version789 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

89
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

58
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.