Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106875
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorMao, Yen_US
dc.creatorAshry, Ien_US
dc.creatorWang, Ben_US
dc.creatorAl-Fehaid, Yen_US
dc.creatorAl-Shawaf, Aen_US
dc.creatorNg, TKen_US
dc.creatorYu, Cen_US
dc.creatorOoi, BSen_US
dc.date.accessioned2024-06-07T00:58:33Z-
dc.date.available2024-06-07T00:58:33Z-
dc.identifier.isbn978-1-943580-86-6en_US
dc.identifier.urihttp://hdl.handle.net/10397/106875-
dc.descriptionOptical Fiber Communication Conference 2021, Washington, DC United States, 6-11 June 2021en_US
dc.language.isoenen_US
dc.publisherOptica Publishing Groupen_US
dc.rights© 2021 The Author(s)en_US
dc.rightsThe following publication Y. Mao et al., "Monitoring the Red Palm Weevil Infestation Using Machine Learning and Optical Sensing," 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 2021, pp. 1-3 is available at https://doi.org/10.1364/OFC.2021.Tu6C.2.en_US
dc.titleMonitoring the red palm weevil infestation using machine learning and optical sensingen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1364/OFC.2021.Tu6C.2en_US
dcterms.abstractRed palm weevil (RPW) is a major pest of palm trees, which has destroyed many farms and caused significant economic losses worldwide. It is difficult to detect the RPW infestation in its early stage, especially in vast farms. Here, we introduce combining machine learning and fiber optic distributed acoustic sensing (DAS) as a solution for detecting the RPW in the larvae stage. A single fiber optic cable would possibly monitor hundreds of trees, simultaneously.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationOptical Fiber Communication Conference (OFC) 2021, OSA Technical Digest (Optica Publishing Group, 2021), paper Tu6C.2en_US
dcterms.issued2021-
dc.relation.conferenceOptical Fiber Communication Conference [OFC]en_US
dc.identifier.artnTu6C.2en_US
dc.description.validate202405 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberEIE-0049-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextKAUST-Research Translation Fundingen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS55104846-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
ofc-2021-tu6c.2.pdf388.34 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

74
Last Week
4
Last month
Citations as of Nov 9, 2025

Downloads

29
Citations as of Nov 9, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.