Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106858
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHao, Men_US
dc.creatorLin, Yen_US
dc.creatorShen, Gen_US
dc.creatorSu, Wen_US
dc.date.accessioned2024-06-06T06:05:19Z-
dc.date.available2024-06-06T06:05:19Z-
dc.identifier.issn0167-9473en_US
dc.identifier.urihttp://hdl.handle.net/10397/106858-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2022 Elsevier B.V. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Hao, M., Lin, Y., Shen, G., & Su, W. (2023). Nonparametric inference on smoothed quantile regression process. Computational Statistics & Data Analysis, 179, 107645 is available at https://doi.org/10.1016/j.csda.2022.107645.en_US
dc.subjectAsymptotic normalityen_US
dc.subjectBahadur representationen_US
dc.subjectQuantile regression processen_US
dc.titleNonparametric inference on smoothed quantile regression processen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume179en_US
dc.identifier.doi10.1016/j.csda.2022.107645en_US
dcterms.abstractThis paper studies the global estimation in semiparametric quantile regression models. For estimating unknown functional parameters, an integrated quantile regression loss function with penalization is proposed. The first step is to obtain a vector-valued functional Bahadur representation of the resulting estimators, and then derive the asymptotic distribution of the proposed infinite-dimensional estimators. Furthermore, a resampling approach that generalizes the minimand perturbing technique is adopted to construct confidence intervals and to conduct hypothesis testing. Extensive simulation studies demonstrate the effectiveness of the proposed method, and applications to the real estate dataset and world happiness report data are provided.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationComputational statistics and data analysis, Mar. 2023, v. 179, 107645en_US
dcterms.isPartOfComputational statistics and data analysisen_US
dcterms.issued2023-03-
dc.identifier.scopus2-s2.0-85141671909-
dc.identifier.eissn1872-7352en_US
dc.identifier.artn107645en_US
dc.description.validate202406 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2752-
dc.identifier.SubFormID48238-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe work of Y. Lin is partially supported by the Hong Kong Research Grants Council (Grant No. 14306219 and 14306620), the National Natural Science Foundation of China (Grant No. 11961028) and Direct Grants for Research, The Chinese University of Hong Kong; M. Hao's research is partly supported by the National Natural Science Foundation of China (No. 11901087) and the Program for Young Excellent Talents, UIBE (No. 19YQ15)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hao_Nonparametric_Inference_Smoothed.pdfPre-Published version2.03 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

49
Citations as of Apr 14, 2025

Downloads

13
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.