Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/106821
| Title: | A semiparametric joint model for cluster size and subunit-specific interval-censored outcomes | Authors: | LEE, CY Wong, KY Lam, KF Bandyopadhyay, D |
Issue Date: | Sep-2023 | Source: | Biometrics, Sept 2023, v. 79, no. 3, p. 2010-2022 | Abstract: | Clustered data frequently arise in biomedical studies, where observations, or subunits, measured within a cluster are associated. The cluster size is said to be informative, if the outcome variable is associated with the number of subunits in a cluster. In most existing work, the informative cluster size issue is handled by marginal approaches based on within-cluster resampling, or cluster-weighted generalized estimating equations. Although these approaches yield consistent estimation of the marginal models, they do not allow estimation of within-cluster associations and are generally inefficient. In this paper, we propose a semiparametric joint model for clustered interval-censored event time data with informative cluster size. We use a random effect to account for the association among event times of the same cluster as well as the association between event times and the cluster size. For estimation, we propose a sieve maximum likelihood approach and devise a computationally-efficient expectation-maximization algorithm for implementation. The estimators are shown to be strongly consistent, with the Euclidean components being asymptotically normal and achieving semiparametric efficiency. Extensive simulation studies are conducted to evaluate the finite-sample performance, efficiency and robustness of the proposed method. We also illustrate our method via application to a motivating periodontal disease dataset. | Keywords: | Dental study EM algorithm Informative cluster size Random effect model Sieve estimation |
Publisher: | Oxford University Press | Journal: | Biometrics | ISSN: | 0006-341X | EISSN: | 1541-0420 | DOI: | 10.1111/biom.13795 | Rights: | © 2022 The International Biometric Society This is a pre-copyedited, author-produced version of an article accepted for publication in Biometrics following peer review. The version of record Chun Yin Lee, Kin Yau Wong, Kwok Fai Lam, Dipankar Bandyopadhyay, A Semiparametric Joint Model for Cluster Size and Subunit-Specific Interval-Censored Outcomes, Biometrics, Volume 79, Issue 3, September 2023, Pages 2010–2022 is available online at: https://doi.org/10.1111/biom.13795. |
| Appears in Collections: | Journal/Magazine Article |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Lee_Semiparametric_Joint_Model.pdf | Pre-Published version | 852.33 kB | Adobe PDF | View/Open |
Page views
45
Citations as of Apr 14, 2025
Downloads
11
Citations as of Apr 14, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



