Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106813
DC FieldValueLanguage
dc.contributorFaculty of Businessen_US
dc.creatorTian, Xen_US
dc.creatorWang, Sen_US
dc.creatorLaporte, Gen_US
dc.creatorYang, Yen_US
dc.date.accessioned2024-06-04T07:39:55Z-
dc.date.available2024-06-04T07:39:55Z-
dc.identifier.issn0377-2217en_US
dc.identifier.urihttp://hdl.handle.net/10397/106813-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectData-driven optimizationen_US
dc.subjectDecision analysisen_US
dc.subjectSample average approximationen_US
dc.subjectWorst-case expected performanceen_US
dc.titleDeterminism versus uncertainty : examining the worst-case expected performance of data-driven policiesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage242en_US
dc.identifier.epage252en_US
dc.identifier.volume318en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1016/j.ejor.2024.04.031en_US
dcterms.abstractThis paper explores binary decision making, a critical domain in areas such as finance and supply chain management, where decision makers must often choose between a deterministic-cost option and an uncertain-cost option. Given the limited historical data on the uncertain cost and its unknown probability distribution, this research aims to ascertain how decision makers can optimize their decisions. To this end, we evaluate the worst-case expected performance of all possible data-driven policies, including the sample average approximation policy, across four scenarios differentiated by the extent of knowledge regarding the lower and upper bounds of the first moment of the uncertain cost distribution. Our analysis, using worst-case expected absolute regret and worst-case expected relative regret metrics, consistently shows that no data-driven policy outperforms the straightforward strategy of choosing either a deterministic-cost or uncertain-cost option in these scenarios. Notably, the optimal choice between these two options depends on the specific lower and upper bounds of the first moment. Our research contributes to the literature by revealing the minimal worst-case expected performance of all possible data-driven policies for binary decision-making problems.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEuropean journal of operational research, 1 Oct. 2024, v. 318, no. 1, p. 242-252en_US
dcterms.isPartOfEuropean journal of operational researchen_US
dcterms.issued2024-10-01-
dc.identifier.scopus2-s2.0-85192061186-
dc.identifier.eissn1872-6860en_US
dc.description.validate202406 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2751-
dc.identifier.SubFormID48229-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-10-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-10-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

83
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.