Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106804
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorZhou, Jen_US
dc.creatorWang, Zen_US
dc.creatorWang, Sen_US
dc.creatorFeng, YPen_US
dc.creatorYang, Men_US
dc.creatorShen, Len_US
dc.date.accessioned2024-06-04T07:39:52Z-
dc.date.available2024-06-04T07:39:52Z-
dc.identifier.issn2055-6756en_US
dc.identifier.urihttp://hdl.handle.net/10397/106804-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2023en_US
dc.rightsThe following publication Zhou, J., Wang, Z., Wang, S., Feng, Y. P., Yang, M., & Shen, L. (2023). Coexistence of ferromagnetism and charge density waves in monolayer LaBr2 [10.1039/D3NH00150D]. Nanoscale Horizons, 8(8), 1054-1061 is available at https://doi.org/10.1039/D3NH00150D.en_US
dc.titleCoexistence of ferromagnetism and charge density waves in monolayer LaBr₂en_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1054en_US
dc.identifier.epage1061en_US
dc.identifier.volume8en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1039/d3nh00150den_US
dcterms.abstractCharge density waves (CDWs), a common phenomenon of periodic lattice distortions, often suppress ferromagnetism in two-dimensional (2D) materials, hindering their magnetic applications. Here, we report a novel CDW that generates 2D ferromagnetism instead of suppressing it, through the formation of interstitial anionic electrons as the charge modulation mechanism. Via first-principles calculations and a low-energy effective model, we find that the highly symmetrical monolayer LaBr2 undergoes a 2 × 1 CDW transition to a magnetic semiconducting T′ phase. Concurrently, the delocalized 5d1 electrons of La in LaBr2 redistribute and accumulate within the interstitial space in the T′ phase, forming anionic electrons, also known as 2D electride or electrene. The strongly localized nature of anionic electrons promotes a Mott insulating state and full spin-polarization, while the overlap of their extended tails yields ferromagnetic direct exchange between them. Such transition introduces a new magnetic form of CDWs, offering promising opportunities for exploring novel fundamental physics and advanced spintronics applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNanoscale horizons, 1 Aug. 2023, v. 8, no. 8, p. 1054-1061en_US
dcterms.isPartOfNanoscale horizonsen_US
dcterms.issued2023-08-
dc.identifier.scopus2-s2.0-85165129967-
dc.identifier.eissn2055-6764en_US
dc.description.validate202406 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2746-
dc.identifier.SubFormID48213-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhou_Coexistence_Ferromagnetism_Charge .pdfPre-Published version1.91 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

56
Citations as of Apr 14, 2025

Downloads

19
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

7
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.