Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106798
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorHu, Q-
dc.creatorYang, K-
dc.creatorPeng, O-
dc.creatorLi, M-
dc.creatorMa, L-
dc.creatorHuang, S-
dc.creatorDu, Y-
dc.creatorXu, ZX-
dc.creatorWang, Q-
dc.creatorChen, Z-
dc.creatorYang, M-
dc.creatorLoh, KP-
dc.date.accessioned2024-06-04T07:39:49Z-
dc.date.available2024-06-04T07:39:49Z-
dc.identifier.issn0002-7863-
dc.identifier.urihttp://hdl.handle.net/10397/106798-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.titleAmmonia Electrosynthesis from Nitrate Using a Ruthenium–Copper Cocatalyst System : A Full Concentration Range Studyen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Addressing the Hydrogen Transfer Limitation in High Concentration Nitrate Reduction by Ruthenium Promoteren_US
dc.identifier.spage668-
dc.identifier.epage676-
dc.identifier.volume146-
dc.identifier.issue1-
dc.identifier.doi10.1021/jacs.3c10516-
dcterms.abstractElectrochemical synthesis of ammonia via the nitrate reduction reaction (NO3RR) has been intensively researched as an alternative to the traditional Haber–Bosch process. Most research focuses on the low concentration range representative of the nitrate level in wastewater, leaving the high concentration range, which exists in nuclear and fertilizer wastes, unexplored. The use of a concentrated electrolyte (≥1 M) for higher rate production is hampered by poor hydrogen transfer kinetics. Herein, we demonstrate that a cocatalytic system of Ru/Cu2O catalyst enables NO3RR at 10.0 A in 1 M nitrate electrolyte in a 16 cm2 flow electrolyzer, with 100% faradaic efficiency toward ammonia. Detailed mechanistic studies by deuterium labeling and operando Fourier transform infrared (FTIR) spectroscopy allow us to probe the hydrogen transfer rate and intermediate species on Ru/Cu2O. Ab initio molecular dynamics (AIMD) simulations reveal that adsorbed hydroxide on Ru nanoparticles increases the density of the hydrogen-bonded water network near the Cu2O surface, which promotes the hydrogen transfer rate. Our work highlights the importance of engineering synergistic interactions in cocatalysts for addressing the kinetic bottleneck in electrosynthesis.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of the American Chemical Society, 10 Jan. 2024, v. 146, no. 1, p. 668-676-
dcterms.isPartOfJournal of the American Chemical Society-
dcterms.issued2024-01-
dc.identifier.scopus2-s2.0-85181569891-
dc.identifier.eissn1520-5126-
dc.description.validate202406 bcch-
dc.identifier.FolderNumbera2746en_US
dc.identifier.SubFormID48197en_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2025-01-10en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2025-01-10
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

1
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

4
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

4
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.