Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106746
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorTian, Wen_US
dc.creatorQi, Len_US
dc.creatorChao, Xen_US
dc.creatorLiang, Jen_US
dc.creatorFu, MWen_US
dc.date.accessioned2024-06-03T02:24:09Z-
dc.date.available2024-06-03T02:24:09Z-
dc.identifier.issn0017-9310en_US
dc.identifier.urihttp://hdl.handle.net/10397/106746-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2019 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Tian, W., Qi, L., Chao, X., Liang, J., & Fu, M. W. (2019). Numerical evaluation on the effective thermal conductivity of the composites with discontinuous inclusions: Periodic boundary condition and its numerical algorithm. International Journal of Heat and Mass Transfer, 134, 735-751 is available at https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.072.en_US
dc.subjectFE homogenizationen_US
dc.subjectHeat flux continuityen_US
dc.subjectNumerical algorithmen_US
dc.subjectPeriodic boundary conditionen_US
dc.subjectThermal conductivityen_US
dc.titleNumerical evaluation on the effective thermal conductivity of the composites with discontinuous inclusions : periodic boundary condition and its numerical algorithmen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage735en_US
dc.identifier.epage751en_US
dc.identifier.volume134en_US
dc.identifier.doi10.1016/j.ijheatmasstransfer.2019.01.072en_US
dcterms.abstractBoundary condition plays an important role in prediction of the effective thermal conductivity of composites. In this research, the periodic boundary condition and the representative volume element (RVE) based finite element (FE) homogenization method are adopted to evaluate the effective thermal conductivities of the composites reinforced by the spherical, ellipsoidal and cylindrical inclusions, and the emphases are on the numerical implementation algorithm and validation of the periodic boundary condition. The heat flux continuity of the node pairs on the opposite surfaces of the RVEs of the composites is analyzed and the effective thermal conductivity of the composites are homogenized. The results show that the heat flux continuity of the node pairs on the opposite surfaces of the RVEs of the composites can be guaranteed by the proposed numerical implementation algorithm for the periodic boundary condition, and that the predicted effective thermal conductivities of the composites agree well with those determined by the Lewis-Nielsen model and the experimental tests. Therefore, the RVE based FE homogenization method with the periodic boundary condition can accurately evaluate the effective thermal conductivity of the composites with discontinuous inclusions.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of heat and mass transfer, May 2019, v. 134, p. 735-751en_US
dcterms.isPartOfInternational journal of heat and mass transferen_US
dcterms.issued2019-05-
dc.identifier.scopus2-s2.0-85060492427-
dc.identifier.eissn1879-2189en_US
dc.description.validate202405 bcwhen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0470-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS55330100-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tian_Numerical_Evaluation_Effective.pdfPre-Published version72.72 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

14
Citations as of Jun 30, 2024

Downloads

3
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

29
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

27
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.