Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106730
PIRA download icon_1.1View/Download Full Text
Title: Experimental and numerical study of the size effect on compound Meso/Microforming behaviors and performances for making bulk parts by directly using sheet metals
Authors: Zheng, JY 
Wang, J
Fu, MW 
Issue Date: Jun-2021
Source: Journal of manufacturing processes, June 2021, v. 66, p. 506-520
Abstract: Meso/microforming of bulk multi-scaled parts and components by directly using sheet metals is an efficient approach to realizing mass production of meso-/micro-scaled bulk structures with good productivity and low cost. This process is promising with the large-scaled application potentials. In this unique deformation-based meso-/micro-scaled manufacturing, size effect arises due to the size scaling up and down of the extrinsic and intrinsic parameters of materials and forming systems, which further induces different mechanical responses and deformation behaviors in meso/microscale from those in macroscale. In this research, a compound microforming system for a blanking-heading process was developed to produce plug-shaped bulk parts by directly using copper sheets as a case study. Different punch-die clearances and grain sizes of specimen were employed to study the interactive effects of geometry and grain sizes on the microforming process and the micro-formed part. Through numerical simulations and experimental measurements of the final parts, the influences of size effect on microstructural evolution, geometrical precision and surface defects of the meso-/micro-formed parts and the load-stroke relationship were comprehensively investigated. The results reveal that when punch-die clearance equals grain size, the maximum ultimate shear stress of blanking and the highest burr are obtained. The larger grain size and punch-die clearance increase the material loss and reduce the bulge diameter of the produced parts. Three shear bands and three dead metal zones were identified on the cross-section of parts, and various defects including sunken area, pits, crack and surface damage were observed on the surface of the parts. These findings facilitate the production of plug-shaped microparts in the aspects of process monitoring and product qualities control and enrich the understanding of sheet-metal bulk forming in this progressive and compound meso/microforming.
Keywords: Forming defects
Meso-/micro forming of bulk parts
Microstructural evolution
Progressive and compound microforming
Size effect
Publisher: Elsevier Ltd
Journal: Journal of manufacturing processes 
ISSN: 1526-6125
EISSN: 2212-4616
DOI: 10.1016/j.jmapro.2021.04.037
Rights: © 2021 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.
The following publication Zheng, J. Y., Wang, J., & Fu, M. W. (2021). Experimental and numerical study of the size effect on compound Meso/Microforming behaviors and performances for making bulk parts by directly using sheet metals. Journal of Manufacturing Processes, 66, 506-520 is available at https://doi.org/10.1016/j.jmapro.2021.04.037.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Zheng_Experimental_And_Numerical.pdfPre-Published version4.49 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

12
Citations as of Jun 30, 2024

Downloads

2
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

12
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

12
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.