Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106721
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorHan, Len_US
dc.creatorWang, CWen_US
dc.creatorXu, HPen_US
dc.creatorYang, Men_US
dc.creatorLi, Ben_US
dc.creatorLiu, Men_US
dc.date.accessioned2024-06-03T02:11:45Z-
dc.date.available2024-06-03T02:11:45Z-
dc.identifier.issn2050-7488en_US
dc.identifier.urihttp://hdl.handle.net/10397/106721-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2024en_US
dc.rightsThe following publication Han, L., Wang, C.-w., Xu, H.-p., Yang, M., Li, B., & Liu, M. (2024). Red blood cell (RBC)-like Ni@N–C composites for efficient electrochemical CO2 reduction and Zn–CO2 batteries [10.1039/D3TA08049H]. Journal of Materials Chemistry A, 12(16), 9462-9468 is available at https://doi.org/10.1039/D3TA08049H.en_US
dc.titleRed blood cell (RBC)-like Ni@N–C composites for efficient electrochemical CO₂ reduction and Zn–CO₂ batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage9462en_US
dc.identifier.epage9468en_US
dc.identifier.volume12en_US
dc.identifier.issue16en_US
dc.identifier.doi10.1039/D3TA08049Hen_US
dcterms.abstractThe development of highly active and selective electrocatalysts for the reduction of CO2 into valuable products presents a promising avenue for addressing the energy crisis and mitigating the greenhouse effect. In this study, we introduce a ligand-assisted supermolecule-derived red blood cell (RBC)-like catalyst composed of nickel and nitrogen-doped carbon (Ni@NC) for electrocatalytic carbon dioxide reduction reaction (eCO2RR) and Zn–CO2 battery applications. Among the various samples prepared, Ni@NC-950 exhibited the highest activity and demonstrated a faradaic efficiency of CO (FECO) greater than 90% across a wide potential range from −0.6 to −1.0 V [vs. reversible hydrogen electrode (RHE)], with a peak FECO of 97.8% achieved at −0.8 V. This translated to a remarkable partial current density (jCO) of 22.5 mA cm−2. When employed as the cathode catalyst in a Zn–CO2 battery, the Ni@NC-950 catalyst delivered a peak power density of 2.36 mW cm−2 at a current density of 10.97 mA cm−2. Importantly, the battery exhibited robust long-term discharge capability, operating continuously and steadily at 5 mA cm−2 for 20 hours.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of materials chemistry A, 28 Apr. 2024, v. 12, no. 16, p. 9462-9468en_US
dcterms.isPartOfJournal of materials chemistry Aen_US
dcterms.issued2024-04-
dc.identifier.scopus2-s2.0-85188115205-
dc.identifier.eissn2050-7496en_US
dc.description.validate202405 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2742a-
dc.identifier.SubFormID48187-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Han_Red_Blood_Cell.pdfPre-Published version1.85 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

46
Citations as of Apr 13, 2025

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.