Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106699
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Chinese and Bilingual Studies-
dc.creatorPranav, A-
dc.creatorCong, Y-
dc.creatorChersoni, E-
dc.creatorHsu, YY-
dc.creatorLenci, A-
dc.date.accessioned2024-06-03T02:11:36Z-
dc.date.available2024-06-03T02:11:36Z-
dc.identifier.isbn978-2-493814-10-4-
dc.identifier.urihttp://hdl.handle.net/10397/106699-
dc.description2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, Lingotto Conference Centre - Torino (Italia), 20-25 May, 2024en_US
dc.language.isoenen_US
dc.publisherELRA and ICCLen_US
dc.rights© 2024 ELRA Language Resource Association: CC BY-NC 4.0en_US
dc.rightsACL materials are Copyright © 1963–2024 ACL; other materials are copyrighted by their respective copyright holders. Materials prior to 2016 here are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License (https://creativecommons.org/licenses/by-nc-sa/3.0/). Permission is granted to make copies for the purposes of teaching and research. Materials published in or after 2016 are licensed on a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication A Pranav, Yan Cong, Emmanuele Chersoni, Yu-Yin Hsu, and Alessandro Lenci. 2024. Comparing Static and Contextual Distributional Semantic Models on Intrinsic Tasks: An Evaluation on Mandarin Chinese Datasets. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 3610–3627, Torino, Italia. ELRA and ICCL is available at https://aclanthology.org/2024.lrec-main.320.en_US
dc.subjectDistributional semantic modelsen_US
dc.subjectMandarin Chineseen_US
dc.subjectSemantic similarityen_US
dc.subjectTransformersen_US
dc.titleComparing static and contextual distributional semantic models on intrinsic tasks : an evaluation on Mandarin Chinese datasetsen_US
dc.typeConference Paperen_US
dc.identifier.spage3610-
dc.identifier.epage3627-
dcterms.abstractThe field of Distributional Semantics has recently undergone important changes, with the contextual representations produced by Transformers taking the place of static word embeddings models. Noticeably, previous studies comparing the two types of vectors have only focused on the English language and a limited number of models. In our study, we present a comparative evaluation of static and contextualized distributional models for Mandarin Chinese, focusing on a range of intrinsic tasks. Our results reveal that static models remain stronger for some of the classical tasks that consider word meaning independent of context, while contextualized models excel in identifying semantic relations between word pairs and in the categorization of words into abstract semantic classes.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn N Calzolari, MY Kan, V Hoste, A Lenci, S Sakti & N Xue (Eds.). The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) : Main Conference Proceedings, 20-25 May, 2024 Torino, Italia, p. 3610-3627. ELRA and ICCL, 2024-
dcterms.issued2024-
dc.relation.ispartofbookThe 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) : Main Conference Proceedings, 20-25 May, 2024, Torino, Italia-
dc.relation.conferenceJoint International Conference on Computational Linguistics, Language Resources and Evaluation [LREC-COLING]-
dc.description.validate202405 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2727ben_US
dc.identifier.SubFormID48144en_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.fundingText.en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
dc.relation.rdatahttps://github.com/pranav-ust/chinese-dsm-
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
2024.lrec-main.320.pdf378.23 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

76
Citations as of May 11, 2025

Downloads

19
Citations as of May 11, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.