Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106543
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLi, Nen_US
dc.creatorShi, Sen_US
dc.creatorLuo, Jen_US
dc.creatorLu, Jen_US
dc.creatorWang, Nen_US
dc.date.accessioned2024-05-09T00:54:10Z-
dc.date.available2024-05-09T00:54:10Z-
dc.identifier.issn0257-8972en_US
dc.identifier.urihttp://hdl.handle.net/10397/106543-
dc.language.isoenen_US
dc.publisherElsevier S.A.en_US
dc.rights© 2016 Elsevier B.V. All rights reserved.en_US
dc.rights© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Li, N., Shi, S., Luo, J., Lu, J., & Wang, N. (2017). Effects of surface nanocrystallization on the corrosion behaviors of 316L and alloy 690. Surface and Coatings Technology, 309, 227-231 is available at https://doi.org/10.1016/j.surfcoat.2016.11.052.en_US
dc.subjectCorrosion resistanceen_US
dc.subjectNitridingen_US
dc.subjectNuclear plant materialsen_US
dc.subjectPassive filmen_US
dc.subjectSurface nanocrystallizationen_US
dc.titleEffects of surface nanocrystallization on the corrosion behaviors of 316L and alloy 690en_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage227en_US
dc.identifier.epage231en_US
dc.identifier.volume309en_US
dc.identifier.doi10.1016/j.surfcoat.2016.11.052en_US
dcterms.abstractSurface mechanical attrition treatments (SMATs) were used to prepare nanostructured surface layers on alloys used in nuclear power plant steam generators (SGs). The effects of surface nanocrystallization on alloy corrosion behavior at room temperature and at 300 °C in a simulated SG environment were studied. At room temperature, the polarization curves indicated that with increasing SMAT duration, the corrosion potential of the samples shifted negatively from smaller to larger values, and alloy active dissolution rate and passive current density both increased. Nitriding treatment was used to improve the corrosion resistance. Compared with corrosion behavior observed at room temperature, corrosion resistance in the simulated SG condition was highly enhanced because the nano-sized-grain layer formed via SMAT provided a higher density of nucleation sites for the formation of a passive film and diffusion paths for Cr, leading to the rapid formation of a dense protective oxide layer.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSurface and coatings technology, 15 Jan. 2017, v. 309, p. 227-231en_US
dcterms.isPartOfSurface and coatings technologyen_US
dcterms.issued2017-01-15-
dc.identifier.scopus2-s2.0-84999053658-
dc.identifier.eissn1879-3347en_US
dc.description.validate202405 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0845-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFC; NSERC; AECLen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6700394-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Shi_Effects_Surface_Nanocrystallization.pdfPre-Published version1.66 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

10
Citations as of Jun 30, 2024

Downloads

2
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

45
Citations as of Jun 27, 2024

WEB OF SCIENCETM
Citations

41
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.