Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106537
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.contributorSchool of Fashion and Textiles-
dc.contributorDepartment of Applied Physics-
dc.creatorChen, Yen_US
dc.creatorDong, Jen_US
dc.creatorQiu, Len_US
dc.creatorLi, Xen_US
dc.creatorLi, Qen_US
dc.creatorWang, Hen_US
dc.creatorLiang, Sen_US
dc.creatorYao, Hen_US
dc.creatorHuang, Hen_US
dc.creatorGao, Hen_US
dc.creatorKim, JKen_US
dc.creatorDing, Fen_US
dc.creatorZhou, Len_US
dc.date.accessioned2024-05-09T00:54:07Z-
dc.date.available2024-05-09T00:54:07Z-
dc.identifier.issn2451-9308en_US
dc.identifier.urihttp://hdl.handle.net/10397/106537-
dc.language.isoenen_US
dc.publisherCell Pressen_US
dc.rights© 2017 Elsevier Inc.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Chen, Y., Dong, J., Qiu, L., Li, X., Li, Q., Wang, H., ... & Zhou, L. (2017). A catalytic etching-wetting-dewetting mechanism in the formation of hollow graphitic carbon fiber. Chem, 2(2), 299-310 is available at https://doi.org/10.1016/j.chempr.2017.01.005.en_US
dc.titleA catalytic etching-wetting-dewetting mechanism in the formation of hollow graphitic carbon fiberen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage299en_US
dc.identifier.epage310en_US
dc.identifier.volume2en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1016/j.chempr.2017.01.005en_US
dcterms.abstractHollow graphitic carbon nanofibers (HGCNFs) have great promise for many important applications, such as catalysis, sensors, energy conversion, gas storage, and electronic devices. Here, we report a catalytic etching-wetting-dewetting mechanism in synthesizing HGCNFs with both hollow spherical-like and tunnel-like pores. With in situ transmission electron microscope imaging, we show that the spherical pores are formed by the evaporation of encapsulated Ni on the surface of amorphous carbon nanofiber and that hollow tunnels are developed through continuous etching of the amorphous carbon under catalysis of Ni nanoparticles. Theoretical calculations and simulations reveal that continuous tunnel etching is driven by the wetting-to-dewetting transition of the Ni-tunnel wall interaction during the catalytic graphitization of the amorphous carbon wall. In a typical application, we demonstrate that the synthesized HGCNFs, with a capacity about three times higher than that of their non-hollow counterparts, are excellent potential candidates for CO2 capture.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationChem, 9 Feb. 2017, v. 2, no. 2, p. 299-310en_US
dcterms.isPartOfChemen_US
dcterms.issued2017-02-09-
dc.identifier.scopus2-s2.0-85013188316-
dc.identifier.eissn2451-9294en_US
dc.description.validate202405 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0832-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextthe Hong Kong Polytechnic University; National Science Foundation of China; National Program for Special Support of Top-Notch Young Professionals and Fundamental Research Funds for the Central Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6723994-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Catalytic_Etching-Wetting-Dewetting_Mechanism.pdfPre-Published version1.46 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

15
Citations as of Jun 30, 2024

Downloads

5
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

49
Citations as of Jun 27, 2024

WEB OF SCIENCETM
Citations

49
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.