Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106521
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorMa, HLen_US
dc.creatorLau, KTen_US
dc.creatorHui, Den_US
dc.creatorShi, SQen_US
dc.creatorPoon, CKen_US
dc.date.accessioned2024-05-09T00:54:02Z-
dc.date.available2024-05-09T00:54:02Z-
dc.identifier.issn1359-8368en_US
dc.identifier.urihttp://hdl.handle.net/10397/106521-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2017 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Ma, H. L., Lau, K. T., Hui, D., Shi, S. Q., & Poon, C. K. (2017). Theoretical analysis on the pullout behavior of carbon nanotube at cryogenic environment with the consideration of thermal residual stress. Composites Part B: Engineering, 128, 67-75 is available at https://doi.org/10.1016/j.compositesb.2017.07.009.en_US
dc.subjectCryogenicen_US
dc.subjectFiber/matrix bonden_US
dc.subjectNumerical analysisen_US
dc.subjectParticle-reinforcementen_US
dc.subjectResidual/internal stressen_US
dc.titleTheoretical analysis on the pullout behavior of carbon nanotube at cryogenic environment with the consideration of thermal residual stressen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage67en_US
dc.identifier.epage75en_US
dc.identifier.volume128en_US
dc.identifier.doi10.1016/j.compositesb.2017.07.009en_US
dcterms.abstractA numerical fiber pullout model tailored for carbon nanotube (CNT) reinforced polymer composites is developed based on some classical models, to evaluate the effect of low temperature environment and other parameters to the stress distribution and stress transfer efficiency in CNT/polymer composites. It is assumed that there are no bonding between CNTs and polymer so only frictional slip occurs in the interface. Results show that the required axial stress to pull out a straight CNT at cryogenic temperature is more than 6 times greater than that required at room temperature. Some other parameters, such as the length of CNT and the modulus of polymer, also influence the stresses in the CNT/polymer model. The model is also applied to coiled carbon nanotubes (CCNTs) which are newly-developed carbon nanotubes with a helical configuration. At cryogenic temperature, a greater stress is required to pull out a CCNT than a straight CNT, especially in the case when the pitch angle of CCNT is less than 60°. Hence, the stress transfer in CCNT/polymer composites is better than that in straight CNT/polymer composites.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationComposites. Part B, Engineering, 1 Nov. 2017, v. 128, p. 67-75en_US
dcterms.isPartOfComposites. Part B, Engineeringen_US
dcterms.issued2017-11-01-
dc.identifier.scopus2-s2.0-85023605972-
dc.identifier.eissn1879-1069en_US
dc.description.validate202405 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0759-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyU; Swinburne University of Technologyen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6760370-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Shi_Theoretical_Analysis_Pullout.pdfPre-Published version1.29 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

7
Citations as of Jun 30, 2024

Downloads

1
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

15
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

12
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.