Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106504
PIRA download icon_1.1View/Download Full Text
Title: Near-field interaction of an inclined jet with a crossflow : LIF visualization and TR-PIV measurement
Authors: Wen, X
Liu, Y
Tang, H 
Issue Date: Feb-2018
Source: Journal of visualization, Feb. 2018, v. 21, no. 1, p. 19-38
Abstract: Experiments are conducted in a water tunnel to investigate the near-field interaction of an inclined jet with a crossflow over a flat plate. The tunnel contains a jet emerging from a round pipe inclined at a 30° angle to the streamwise direction of the crossflow. The flow structures induced by the inclined jet are examined with laser-induced fluorescence (LIF) visualization and time-resolved particle image velocimetry (TR-PIV). The behaviors of the near-field flow are compared at four different jet-to-cross-flow velocity ratios (VRs): 0.25, 0.5, 0.75, and 1.0. It is found that the inclined configuration significantly weakens the interaction between the jet and the crossflow, especially at lower VRs. As such, at VR ≤0.5 (typically at VR = 0.25), the inclined jet-in-crossflow (JICF) behaves differently from a highly unsteady normal JICF at low VRs. The flow patterns are relatively simple and only weakly unsteady. A counter-rotating vortex pair (CRVP) is well observed. As VR increases up to 1.0, the inclined JICF fully detaches from the flat plate and shows the classical topology of the normal JICF at high VRs. Both CRVP and shear layer vortices are well captured in this highly unsteady flow regime. The different flow structures together with the interaction between the inclined jet and the crossflow near the jet exit are found to have a strong impact on the distribution of jet-shear layer, jet trajectory, and the jet influence on the crossflow, especially on the near-wall region. Proper orthogonal decomposition is performed on the TR-PIV results to extract the dominant fluctuating modes and reconstruct phase-averaged flow fields. It is found that the highly unsteady flow regime at VR = 1.0 is very unstable, varying between two flow patterns with different fluctuating frequencies at downstream of the jet column. The jet flow near to the exit is also found to be remarkably unsteady due to the interaction between the emerging jet and the crossflow.
Keywords: Flow structures
JICF
LIF
PIV
POD
Publisher: Springer
Journal: Journal of visualization 
ISSN: 1343-8875
EISSN: 1875-8975
DOI: 10.1007/s12650-017-0437-3
Rights: © The Visualization Society of Japan 2017
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s12650-017-0437-3.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Tang_Near-Field_Interaction_Inclined.pdfPre-Published version3.16 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

9
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

11
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

10
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.