Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106487
PIRA download icon_1.1View/Download Full Text
Title: Principles and mechanisms of strain-dependent thermal conductivity of polycrystalline graphene with varying grain sizes and surface hydrogenation
Authors: Wei, A
Liu, Q
Yao, H 
Li, Y
Li, Y
Issue Date: 30-Aug-2018
Source: Journal of physical chemistry C, 30 Aug. 2018, v. 122, no. 34, p. 19869-19879
Abstract: In this paper, the thermal conductivities (κ) of polycrystalline graphene (PG) with varying average grain size are investigated using reverse nonequilibrium molecular dynamics method. Due to the presence of grain boundary (GB), the κ of PG is found to depend on the average grain size as well as in-plane strain and hydrogenation coverage. The principles and mechanisms for the change of κ with in-plane strain and surface hydrogenation are interpreted combining the thermal transport theory and phonon density of states (PDOS) analysis. The thermal property of PG under tension is found to be related with the average stress in PG as a result of the suppression of mean free path (MFP) and the softening of phonon modes. PG with fine grains exhibits more reduction of κ than the PG with coarse grains does under the same tensile strain due to the more stress concentration at GBs. The mechanism is also revealed for the size effect on the thermal property of PG under compression. Additionally, the dependency of κ on the surface hydrogenation of PG is investigated, and an unexpected two-stage evolution of κ with hydrogenation coverage is interpreted preliminarily from the circumference and arrangement of functionalized domains. The negative effect of GB on thermal conductivity is weakened significantly under full hydrogenation. Furthermore, the coupling effect between hydrogenation and strain on the κ of PG is revealed, and the thermal conductivity of PG becomes insensitive to the in-plane strain under higher hydrogenation. Our results provide new insights into the role of GB on the thermal manipulation of PG and offer theoretical guidelines for the design of graphene-based flexible devices in thermoelectric and thermal management applications.
Publisher: American Chemical Society
Journal: Journal of physical chemistry C 
ISSN: 1932-7447
EISSN: 1932-7455
DOI: 10.1021/acs.jpcc.8b03393
Rights: © 2018 American Chemical Society
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.jpcc.8b03393.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Yao_Principles_Mechanisms_Strain-Dependent.pdfPre-Published version1.94 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

10
Citations as of Jun 30, 2024

Downloads

2
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

8
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

9
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.