Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106376
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorZhu, Wen_US
dc.creatorZhao, Cen_US
dc.creatorZhang, Yen_US
dc.creatorKwok, CTen_US
dc.creatorLuan, Jen_US
dc.creatorJiao, Zen_US
dc.creatorRen, Fen_US
dc.date.accessioned2024-05-09T00:53:06Z-
dc.date.available2024-05-09T00:53:06Z-
dc.identifier.issn1359-6454en_US
dc.identifier.urihttp://hdl.handle.net/10397/106376-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Zhu, W., Zhao, C., Zhang, Y., Kwok, C. T., Luan, J., Jiao, Z., & Ren, F. (2020). Achieving exceptional wear resistance in a compositionally complex alloy via tuning the interfacial structure and chemistry. Acta Materialia, 188, 697-710 is available at https://doi.org/10.1016/j.actamat.2020.02.039.en_US
dc.subjectCompositionally complex alloyen_US
dc.subjectInterfaceen_US
dc.subjectTitanium alloysen_US
dc.subjectWearen_US
dc.titleAchieving exceptional wear resistance in a compositionally complex alloy via tuning the interfacial structure and chemistryen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage697en_US
dc.identifier.epage710en_US
dc.identifier.volume188en_US
dc.identifier.doi10.1016/j.actamat.2020.02.039en_US
dcterms.abstractTitanium alloys have been widely used for medical devices and structural applications. However, conventional titanium alloys often suffer from low resistance to wear, particularly at elevated temperatures. Herein, an equiatomic TiMoNb compositionally complex alloy (CCA) is shown to exhibit wear resistance comparable to alumina at room temperature (RT). Even at 600 °C, the alloy still shows an extremely low wear rate of the order of 10−6 mm3/(N·m). The remarkable wear resistance is achieved via tuning the interfacial structure and chemistry in TiMoNb CCA, including nanostructuring, titanium segregation at the grain boundaries, and the formation of a high density of nanoscale coherent Ti-rich precipitates with cube-on-cube orientation relationship with the ultrafine-grained matrix. The present results provide significant insights into the design of novel alloys for service in harsh environments.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationActa materialia, 15 Apr. 2020, v. 188, p. 697-710en_US
dcterms.isPartOfActa materialiaen_US
dcterms.issued2020-04-15-
dc.identifier.scopus2-s2.0-85081031221-
dc.identifier.eissn1873-2453en_US
dc.description.validate202405 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0274-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextFundamental Research Program of Shenzhen; Guangdong Innovative & Entrepreneurial Research Team Program; City University of Hong Kong; Presidential fund and Development and Reform Commission of Shenzhen Municipalityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS21626661-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Jiao_Achieving_Exceptional_Wear.pdfPre-Published version2.91 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

8
Citations as of Jun 30, 2024

Downloads

4
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

64
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

60
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.