Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106360
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorYang, Ten_US
dc.creatorZhao, YLen_US
dc.creatorLi, WPen_US
dc.creatorYu, CYen_US
dc.creatorLuan, JHen_US
dc.creatorLin, DYen_US
dc.creatorFan, Len_US
dc.creatorJiao, ZBen_US
dc.creatorLiu, WHen_US
dc.creatorLiu, XJen_US
dc.creatorKai, JJen_US
dc.creatorHuang, JCen_US
dc.creatorLiu, CTen_US
dc.date.accessioned2024-05-09T00:52:59Z-
dc.date.available2024-05-09T00:52:59Z-
dc.identifier.urihttp://hdl.handle.net/10397/106360-
dc.language.isoenen_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.rightsThis is the accepted version of the following article: T. Yang et al. ,Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces.Science 369, 427-432 (2020), which has been published in https://doi.org/10.1126/science.abb6830.en_US
dc.titleUltrahigh-strength and ductile superlattice alloys with nanoscale disordered interfacesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage427en_US
dc.identifier.epage432en_US
dc.identifier.volume369en_US
dc.identifier.issue6502en_US
dc.identifier.doi10.1126/science.abb6830en_US
dcterms.abstractAlloys that have high strengths at high temperatures are crucial for a variety of important industries including aerospace. Alloys with ordered superlattice structures are attractive for this purpose but generally suffer from poor ductility and rapid grain coarsening. We discovered that nanoscale disordered interfaces can effectively overcome these problems. Interfacial disordering is driven by multielement cosegregation that creates a distinctive nanolayer between adjacent micrometer-scale superlattice grains. This nanolayer acts as a sustainable ductilizing source, which prevents brittle intergranular fractures by enhancing dislocation mobilities. Our superlattice materials have ultrahigh strengths of 1.6 gigapascals with tensile ductilities of 25% at ambient temperature. Simultaneously, we achieved negligible grain coarsening with exceptional softening resistance at elevated temperatures. Designing similar nanolayers may open a pathway for further optimization of alloy properties.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationScience, 24 July 2020, v. 369, no. 6502, p. 427-432en_US
dcterms.isPartOfScienceen_US
dcterms.issued2020-07-24-
dc.identifier.eissn0036-8075en_US
dc.description.validate202405 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0239-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Natural Science Foundation of Shenzhen Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS26160977-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Fan_Ultrahigh-Strength_Ductile_Superlattice.pdfPre-Published version1.17 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

8
Citations as of Jun 30, 2024

Downloads

1
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

201
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

193
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.