Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106350
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorKong, HJ-
dc.creatorYang, T-
dc.creatorChen, R-
dc.creatorYue, SQ-
dc.creatorZhang, TL-
dc.creatorCao, BX-
dc.creatorWang, C-
dc.creatorLiu, WH-
dc.creatorLuan, JH-
dc.creatorJiao, ZB-
dc.creatorZhou, BW-
dc.creatorMeng, LG-
dc.creatorWang, A-
dc.creatorLiu, CT-
dc.date.accessioned2024-05-09T00:52:57Z-
dc.date.available2024-05-09T00:52:57Z-
dc.identifier.issn1359-6462-
dc.identifier.urihttp://hdl.handle.net/10397/106350-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Kong, H. J., Yang, T., Chen, R., Yue, S. Q., Zhang, T. L., Cao, B. X., ... & Liu, C. T. (2020). Breaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additions. Scripta Materialia, 186, 213-218 is available at https://doi.org/10.1016/j.scriptamat.2020.05.008.en_US
dc.subjectAdvanced nanostructured Fe-based alloysen_US
dc.subjectGrain boundary precipitationen_US
dc.subjectNano-scale Cu precipitationen_US
dc.subjectStrength-ductility paradoxen_US
dc.subjectTransformation induced plasticity (TRIP)en_US
dc.titleBreaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additionsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage213-
dc.identifier.epage218-
dc.identifier.volume186-
dc.identifier.doi10.1016/j.scriptamat.2020.05.008-
dcterms.abstractThe strength-ductility paradox is a long-sought challenge for all engineering materials. In this study, we escaped the strength-ductility trade-off by engineering nano-scale heterogeneities carefully in the advanced nanostructured Fe-based alloys through alloying with Cu and Mn additions. We demonstrated a triple ductility enhancement by 20% together with a strength improvement of 100MPa compared to the alloys with sole Cu additions, overturning a common understanding of the strength-ductility trade-off. The strength-ductility enhancement is attributed to the complex interplay between the transformation induced plasticity (TRIP) and the coherent nano-scale Cu precipitates as well as the resultant heterogeneous stress–strain partitioning and dislocation interactions.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationScripta materialia, Sept 2020, v. 186, p. 213-218-
dcterms.isPartOfScripta materialia-
dcterms.issued2020-09-
dc.identifier.scopus2-s2.0-85085627889-
dc.identifier.eissn1872-8456-
dc.description.validate202405 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0203en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextCity University of Hong Kongen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS26161009en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Jiao_Breaking_Strength-Ductility_Paradox.pdfPre-Published version1.08 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

11
Citations as of Jun 30, 2024

Downloads

3
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

21
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

21
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.