Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106308
PIRA download icon_1.1View/Download Full Text
Title: Shear-lag modelling of surface-bonded magnetostrictive transducers for shear horizontal wave generation in a non-ferromagnetic plate
Authors: Wen, F 
Shan, S 
Radecki, R
Staszewski, WJ
Cheng, L 
Issue Date: Mar-2021
Source: Smart materials and structures, Mar. 2021, v. 30, no. 3, 035026
Abstract: The fundamental shear horizontal (SH) wave in thin-walled structures shows appealing features for structural health monitoring (SHM) applications. Its efficient generation and reception however remain a critical and challenging issue. Magnetostrictive transducers (MsTs) show proven ability in exciting strong SH waves due to the high piezomagnetic coefficient of the ferromagnetic foil. In this study, to investigate the fundamental SH wave generation using MsTs and their design, a theoretical model is established based on the shear-lag model and the normal mode expansion method. The coupling of an MsT with a host plate is achieved by a bonding layer, whose mechanical property is modelled through the continuous shear stress across the thickness. The theoretical model is validated using finite element simulations in terms of generation mechanism and some typical features associated with the fundamental SH wave component. Meanwhile, wave field is visualized using a 3D Laser scanning vibrometer system. Experimental results within a wide frequency range show a good agreement with the theoretically predicted results. Influences of the coil configuration and bonding conditions are further investigated using the proposed model. The study offers guidelines to system design and optimization for fundamental SH wave generation in views of guided-wave-based SHM applications.
Keywords: 3D laser
Frequency tuning curve
Fundamental shear horizontal wave
Magnetostriction
Structural health monitoring
Publisher: Institute of Physics Publishing Ltd.
Journal: Smart materials and structures 
ISSN: 0964-1726
EISSN: 1361-665X
DOI: 10.1088/1361-665X/abe183
Rights: © 2021 IOP Publishing Ltd
This is the Accepted Manuscript version of an article accepted for publication in Smart Materials and Structures. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-665X/abe183.
This manuscript version is made available under the CC-BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Wen_Shear-Lag_Modelling_Surface-Bonded.pdfPre-Published version2.59 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

5
Citations as of Jun 30, 2024

Downloads

1
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

10
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

10
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.