Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106301
PIRA download icon_1.1View/Download Full Text
Title: Bidirectional elastic diode with frequency-preserved nonreciprocity
Authors: Fang, X 
Wen, J
Cheng, L 
Li, B
Issue Date: May-2021
Source: Physical review applied, May 2021, v. 15, no. 5, 054022, p. 054022-1 - 054022-11
Abstract: The study of nonreciprocal wave propagation is of great interest for both fundamental research and engineering applications. Here we demonstrate theoretically and experimentally a bidirectional, nonreciprocal, and high-quality diode that can rectify elastic waves in both forward and backward directions in an elastic metamaterial designed to exhibit enhanced nonlinearity of resonances. This diode can preserve or vary frequency, rectify low-frequency long wave with small system size, offer high-quality insulation, can be modulated by amplitude, and break reciprocity of both the total energy and fundamental wave. We report three mechanisms to break reciprocity: the amplitude-dependent band gap combining interface reflection, chaotic response combining linear band gap, amplitude-dependent attenuation rate in damping diode. The bidirectional diode paves ways for mutually controlling information and energy transport between two sources, which can be used as wave insulators.
Publisher: American Physical Society
Journal: Physical review applied 
EISSN: 2331-7019
DOI: 10.1103/PhysRevApplied.15.054022
Rights: © 2021 American Physical Society
The following publication Fang, X., Wen, J., Cheng, L., & Li, B. (2021). Bidirectional elastic diode with frequency-preserved nonreciprocity. Physical Review Applied, 15(5), 054022 is available at https://doi.org/10.1103/PhysRevApplied.15.054022.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
PhysRevApplied.15.054022.pdf2.55 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

5
Citations as of Jun 30, 2024

Downloads

1
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

17
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

16
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.