Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/106175
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorZhang, Hen_US
dc.creatorWan, LXen_US
dc.creatorPaesani, Sen_US
dc.creatorLaing, Aen_US
dc.creatorShi, YZen_US
dc.creatorCai, Hen_US
dc.creatorLuo, XSen_US
dc.creatorLo, GQen_US
dc.creatorKwek, LCen_US
dc.creatorLiu, AQen_US
dc.date.accessioned2024-05-03T00:45:37Z-
dc.date.available2024-05-03T00:45:37Z-
dc.identifier.urihttp://hdl.handle.net/10397/106175-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.rightsPublished by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/). Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.en_US
dc.rightsThe following publication Zhang, H., Wan, L., Paesani, S., Laing, A., Shi, Y., Cai, H., Luo, X., Lo, G.-Q., Kwek, L. C., & Liu, A. Q. (2023). Encoding Error Correction in an Integrated Photonic Chip. PRX Quantum, 4(3), 030340 is available at https://dx.doi.org/10.1103/PRXQuantum.4.030340.en_US
dc.titleEncoding error correction in an integrated photonic chipen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage030340-1en_US
dc.identifier.epage030340-11en_US
dc.identifier.volume4en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1103/PRXQuantum.4.030340en_US
dcterms.abstractIntegrated photonics provides a versatile platform for encoding and processing quantum information. However, the encoded quantum states are sensitive to noise, which limits their capability to perform complicated quantum computations. Here, we use a five-qubit linear cluster state on a silicon photonic chip to implement a quantum error-correction code and demonstrate its capability of identifying and correcting a single-qubit error. The encoded quantum information is reconstructed from a single-qubit error and an average state fidelity of 0.863 +/- 0.032 is achieved for different input states. We further extend the scheme to demonstrate a fault-tolerant measurement-based quantum computation (MBQC) on stabilizer formal-ism that allows us to redo the qubit operation against the failure of the teleportation process. Our work provides a proof-of-concept working prototype of error correction and MBQC in an integrated photonic chip.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPRX quantum, Sept.-Nov. 2023, v. 4, no. 3, 030340, p. 030340-1-030340-11en_US
dcterms.isPartOfPRX quantumen_US
dcterms.issued2023-09-
dc.identifier.isiWOS:001083688400001-
dc.identifier.eissn2691-3399en_US
dc.identifier.artn030340en_US
dc.description.validate202405 bcrcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextSingapore Ministry of Education(Ministry of Education, Singapore)en_US
dc.description.fundingTextNational Research Foundationen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
PRXQuantum.4.030340.pdf3.51 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

14
Citations as of Jun 30, 2024

Downloads

4
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

3
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

3
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.