Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105961
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineeringen_US
dc.creatorWen, CYen_US
dc.creatorJiang, Yen_US
dc.creatorShi, Len_US
dc.date.accessioned2024-04-23T04:32:37Z-
dc.date.available2024-04-23T04:32:37Z-
dc.identifier.isbn978-981-99-0875-2 (Hardcover)en_US
dc.identifier.isbn978-981-99-0878-3 (Softcover)en_US
dc.identifier.isbn978-981-99-0876-9 (eBook)en_US
dc.identifier.urihttp://hdl.handle.net/10397/105961-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication.en_US
dc.rightsThis book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.en_US
dc.rightsThe following publication Wen, CY., Jiang, Y., Shi, L. (2023). High-Order CESE Schemes. In: Space–Time Conservation Element and Solution Element Method. Engineering Applications of Computational Methods, vol 13. Springer, Singapore is available at https://doi.org/10.1007/978-981-99-0876-9_5.en_US
dc.titleHigh-order CESE schemesen_US
dc.typeBook Chapteren_US
dc.identifier.epage68en_US
dc.identifier.doi10.1007/978-981-99-0876-9_5en_US
dcterms.abstractThis chapter is dedicated to the description of high-order CESE schemes. In the second-order CESE schemes, the first-order Taylor expansion was employed to approximate the unknowns and fluxes within the solution elements. The accuracy of the scheme mainly depends on the approximations on the surfaces of the conservation elements. Analogously, the high-order CESE schemes with Mth-order in space and time are generally derived from (M−1)th-order Taylor expansions in the solution elements. The high-order CESE schemes use a highly compact stencil. Furthermore, spatial and temporal high-order accuracy can be achieved simultaneously. We shall start with constructing a 1D high-order scheme and then extend it to multi-dimensional schemes.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn CY Wen, Y Jiang, & L Shi (2023), Space-time conservation element and solution element method: advances and applications in engineering sciences, p. 57-68. Singapore: Springer.en_US
dcterms.issued2023-
dc.identifier.scopus2-s2.0-85153112910-
dc.relation.ispartofbookSpace-time conservation element and solution element method : advances and applications in engineering sciencesen_US
dc.publisher.placeSingaporeen_US
dc.identifier.artn57en_US
dc.description.validate202404 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Book Chapter
Files in This Item:
File Description SizeFormat 
978-981-99-0876-9_5.pdf459.44 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

33
Citations as of Dec 22, 2024

Downloads

8
Citations as of Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.