Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105950
PIRA download icon_1.1View/Download Full Text
Title: Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy using biolubricant
Authors: Cui, X
Li, C
Zhang, Y 
Ding, W
An, Q
Liu, B
Li, HN
Said, Z
Sharma, S
Li, R
Debnath, S
Issue Date: Mar-2023
Source: Frontiers of mechanical engineering, Mar. 2023, v. 18, no.1, 3
Abstract: The substitution of biolubricant for mineral cutting fluids in aerospace material grinding is an inevitable development direction, under the requirements of the worldwide carbon emission strategy. However, serious tool wear and workpiece damage in difficult-to-machine material grinding challenges the availability of using biolubricants via minimum quantity lubrication. The primary cause for this condition is the unknown and complex influencing mechanisms of the biolubricant physicochemical properties on grindability. In this review, a comparative assessment of grindability is performed using titanium alloy, nickel-based alloy, and high-strength steel. Firstly, this work considers the physicochemical properties as the main factors, and the antifriction and heat dissipation behaviours of biolubricant in a high temperature and pressure interface are comprehensively analysed. Secondly, the comparative assessment of force, temperature, wheel wear and workpiece surface for titanium alloy, nickel-based alloy, and high-strength steel confirms that biolubricant is a potential replacement of traditional cutting fluids because of its improved lubrication and cooling performance. High-viscosity biolubricant and nano-enhancers with high thermal conductivity are recommended for titanium alloy to solve the burn puzzle of the workpiece. Biolubricant with high viscosity and high fatty acid saturation characteristics should be used to overcome the bottleneck of wheel wear and nickel-based alloy surface burn. The nano-enhancers with high hardness and spherical characteristics are better choices. Furthermore, a different option is available for high-strength steel grinding, which needs low-viscosity biolubricant to address the debris breaking difficulty and wheel clogging. Finally, the current challenges and potential methods are proposed to promote the application of biolubricant.
Keywords: Aerospace
Biolubricant
Difficult-to-machine material
Grindability
Grinding
Physicochemical property
Publisher: Higher Education Press
Journal: Frontiers of mechanical engineering 
ISSN: 2095-0233
EISSN: 2095-0241
DOI: 10.1007/s11465-022-0719-x
Rights: © The Author(s) 2022. This article is published with open access at link.springer.com and journal.hep.com.cn
 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as appropriate credit is given to the original author(s) and source, a link to the Creative Commons license is provided, and the changes made are indicated. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. Visit http://creativecommons.org/licenses/by/4.0/ to view a copy of this license.
The following publication Cui, X., Li, C., Zhang, Y. et al. Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy using biolubricant. Front. Mech. Eng. 18, 3 (2023) is available at https://doi.org/10.1007/s11465-022-0719-x.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
s11465-022-0719-x.pdf10.78 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

9
Citations as of Jun 30, 2024

SCOPUSTM   
Citations

69
Citations as of Jul 4, 2024

WEB OF SCIENCETM
Citations

74
Citations as of Jul 4, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.