Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105874
PIRA download icon_1.1View/Download Full Text
Title: Gancao Nourishing-Yin decoction combined with methotrexate in treatment of aging CIA mice : a study based on DIA proteomic analysis
Authors: Chen, Y
Zhu, XW
Lai, WF 
Liu, YP
Xu, XF
Liu, LM
Chen, YJ
Zhang, CF
Wang, GY
Cheng, ZQ
Liu, DZ
Issue Date: 2023
Source: Chinese medicine, 2023, v. 18, 9
Abstract: Background: Elderly rheumatoid arthritis (ERA) population faces multiple treatment dilemma. Here we aim to investigate if Gancao Nourishing-Yin decoction (GCNY) added to methotrexate (MTX) exhibit better effects in an ERA mice model.
Methods: ERA mice model was established by adding D-galactose (Dgal) to collagen-induced arthritis (CIA) mice. The model was then assigned into control group (CIA + Dgal), MTX treatment group (MTX), GCNY treatment group (GCNY), and integrative treatment group (MTX + GCNY). Pathological scoring was performed to evaluate the severity between the groups. Proteomic analysis was applied to investigate the secretory phenotype of the ERA mouse model and the underlying mechanism of GCNY, MTX and their combination. Representative cytokines related to proteomic results were further validated by ELISAs.
Results: CIA + Dgal mice showed more aggressive joints damage than the CIA mice. Besides changes in the inflammatory pathway such as Pi3k-Akt signaling pathway in both model, differential expressed proteins (DEPs) indicated metabolism-related pathways were more obvious in CIA + Dgal mice. Low-dose MTX failed to show pathological improvement in CIA + Dgal mice, while GCNY improved joints damage significantly. Besides down-regulated inflammation-related targets, GCNY-regulated DEPs (such as Apoc1 ~ 3, Grk2 and Creb3l3) were broadly enriched in metabolism-related pathways. MTX + GCNY showed the best therapeutic effect, and the DEPs enriched in a variety of inflammatory,metabolism and osteoclast differentiation signaling pathway. Notably, MTX + GCNY treatment up-regulated Dhfr, Cbr1, Shmt1 involved in folic acid biosynthesis and anti-folate resistance pathways indicated a coincidence synergic action. ELISAs confirmed CPR and Akt that elevated in CIA + Dgal mice were significantly ameliorated by treatments, and adding on GCNY elevated folic acid levels and its regulator Dhfr.
Conclusion: Aging aggravated joints damage in CIA, which probably due to metabolic changes rather than more severe inflammation. GCNY showed significant effects in the ERA mice model especially when integrated with MTX to obtain a synergic action.
Keywords: Aging
Integrative treatment
Rheumatoid arthritis
Synergic action
Traditional Chinese medicine
Publisher: BioMed Central Ltd.
Journal: Chinese medicine 
EISSN: 1749-8546
DOI: 10.1186/s13020-023-00709-9
Rights: © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
The following publication Chen, Y., Zhu, Xw., Lai, WF. et al. Gancao Nourishing-Yin decoction combined with methotrexate in treatment of aging CIA mice: a study based on DIA proteomic analysis. Chin Med 18, 9 (2023) is available at https://doi.org/10.1186/s13020-023-00709-9.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
s13020-023-00709-9.pdf12.86 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

9
Citations as of Jun 30, 2024

Downloads

1
Citations as of Jun 30, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.