Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/105664
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Computing | - |
| dc.creator | Xu, L | en_US |
| dc.creator | Wei, X | en_US |
| dc.creator | Cao, J | en_US |
| dc.creator | Yu, PS | en_US |
| dc.date.accessioned | 2024-04-15T07:35:46Z | - |
| dc.date.available | 2024-04-15T07:35:46Z | - |
| dc.identifier.isbn | 978-1-5090-5004-8 (Electronic) | en_US |
| dc.identifier.isbn | 978-1-5090-5005-5 (Print on Demand(PoD)) | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/105664 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers | en_US |
| dc.rights | © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en_US |
| dc.rights | The following publication L. Xu, X. Wei, J. Cao and P. S. Yu, "Multi-task Network Embedding," 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 2017, pp. 571-580 is available at https://doi.org/10.1109/DSAA.2017.19. | en_US |
| dc.title | Multi-task network embedding | en_US |
| dc.type | Conference Paper | en_US |
| dc.identifier.spage | 571 | en_US |
| dc.identifier.epage | 580 | en_US |
| dc.identifier.doi | 10.1109/DSAA.2017.19 | en_US |
| dcterms.abstract | As there are various data mining applications involving network analysis, network embedding is frequently employed to learn latent representations or embeddings that encode the network structure. However, existing network embedding models are only designed for a single network scenario. It is common that nodes can have multiple types of relationships in big data era, which results in multiple networks, e.g., multiple social networks and multiple gene regulatory networks. Jointly embedding multiple networks thus may make network-specific embeddings more comprehensive and complete as the same node may expose similar or complementary characteristics in different networks. In this paper, we thus propose an idea of multi-task network embedding (MTNE) to jointly learn multiple network-specific embeddings for each node via enforcing an extra information-sharing embedding. Moreover, we instantiate the idea in two models that are different in the mechanism for enforcing the information-sharing embedding. The first model enforces the information-sharing embedding as a common embedding shared by all tasks, which is similar to the concept of the common metric in multi-task metric learning while the second model enforces the information-sharing embedding as a consensus embedding on which all network-specific embeddings agree. We demonstrate through comprehensive experiments on three real-world datasets that the proposed models outperform state-of-the-art network embedding models in applications including visualization, link prediction, and multi-label classification. | - |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 19-21 October 2017, p. 571-580 | en_US |
| dcterms.issued | 2017 | - |
| dc.identifier.scopus | 2-s2.0-85046256333 | - |
| dc.relation.conference | International Conference on Data Science and Advanced Analytics [DSAA] | - |
| dc.description.validate | 202402 bcch | - |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | COMP-1201 | - |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | HK PolyU; NSF; NSFC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 20677084 | - |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Conference Paper | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Xu_Multi-Task_Network_Embedding.pdf | Pre-Published version | 7.57 MB | Adobe PDF | View/Open |
Page views
93
Last Week
3
3
Last month
Citations as of Nov 30, 2025
Downloads
119
Citations as of Nov 30, 2025
SCOPUSTM
Citations
14
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
9
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



