Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105633
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorXu, Len_US
dc.creatorWei, Xen_US
dc.creatorCao, Jen_US
dc.creatorYu, PSen_US
dc.date.accessioned2024-04-15T07:35:33Z-
dc.date.available2024-04-15T07:35:33Z-
dc.identifier.isbn978-3-319-93036-7en_US
dc.identifier.isbn978-3-319-93037-4 (eBook)en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10397/105633-
dc.description22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer International Publishing AG, part of Springer Nature 2018en_US
dc.rightsThis version of the proceeding paper has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-319-93037-4_15.en_US
dc.titleInteraction content aware network embedding via co-embedding of nodes and edgesen_US
dc.typeConference Paperen_US
dc.identifier.spage183en_US
dc.identifier.epage195en_US
dc.identifier.volume10938en_US
dc.identifier.doi10.1007/978-3-319-93037-4_15en_US
dcterms.abstractNetwork embedding has been a hot topic as it can learn node representations that encode the network structure resulting from node interactions. In this paper, besides the network structure, the interaction content within which each interaction arises is also embedded because it reveals interaction preferences of the two nodes involved. Specifically, we propose interaction content aware network embedding (ICANE) via co-embedding of nodes and edges. The embedding of edges is to learn edge representations that preserve the interaction content, which then can be incorporated into node representations through edge representations. Experiments demonstrate ICANE outperforms five recent network embedding models in visualization, link prediction and classification.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationLecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics), 2018, v. 10938, p. 183-195en_US
dcterms.isPartOfLecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics)en_US
dcterms.issued2018-
dc.identifier.scopus2-s2.0-85049380548-
dc.relation.conferencePacific-Asia Conference on Knowledge Discovery [PAKDD]en_US
dc.identifier.eissn1611-3349en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCOMP-1026-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHK PolyU; NSF; NSFCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS14232527-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Xu_Interaction_Content_Aware.pdfPre-Published version4.33 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

91
Last Week
5
Last month
Citations as of Nov 30, 2025

Downloads

43
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

5
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.