Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105598
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.creatorXu, L-
dc.creatorWei, X-
dc.creatorCao, J-
dc.creatorYu, PS-
dc.date.accessioned2024-04-15T07:35:17Z-
dc.date.available2024-04-15T07:35:17Z-
dc.identifier.isbn978-1-4503-4914-7-
dc.identifier.urihttp://hdl.handle.net/10397/105598-
dc.language.isoenen_US
dc.publisherInternational World Wide Web Conferences Steering Committeeen_US
dc.rights© 2017 International World Wide Web Conference Committee (IW3C2), published under Creative Commons CC BY 4.0 License (https://creativecommons.org/licenses/by/4.0/)en_US
dc.rightsThe following publication Xu, L., Wei, X., Cao, J., & Yu, P. S. (2017, April). On learning mixed community-specific similarity metrics for cold-start link prediction. In Proceedings of the 26th International Conference on World Wide Web Companion (pp. 861-862) is available at https://doi.org/10.1145/3041021.3054269.en_US
dc.titleOn learning mixed community-specific similarity metrics for cold-start link predictionen_US
dc.typeConference Paperen_US
dc.identifier.spage861-
dc.identifier.epage862-
dc.identifier.doi10.1145/3041021.3054269-
dcterms.abstractWe study the cold-start link prediction problem where edges between vertices is unavailable by learning vertex-based similarity metrics. Existing metric learning methods for link prediction fail to consider communities which can be observed in many real-world social networks. Because different communities usually exhibit different intra-community homogeneities, learning a global similarity metric is not appropriate. In this paper, we thus propose to learn community-specific similarity metrics via joint community detection. Experiments on three real-world networks show that the intra-community homogeneities can be well preserved, and the mixed community-specific metrics perform better than a global similarity metric in terms of prediction accuracy.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationWWW '17 Companion : proceedings of the 26th International Conference on World Wide Web : May 3-7, 2017, Perth, Australia, p. 861-862-
dcterms.issued2017-
dc.identifier.scopus2-s2.0-85060307118-
dc.relation.conferenceInternational Conference on World Wide Web Companion [WWW]-
dc.description.validate202402 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCOMP-0733en_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS14211789en_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Xu_Learning_Mixed_Community-Specific.pdf562.05 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

85
Last Week
2
Last month
Citations as of Nov 30, 2025

Downloads

50
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

10
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.