Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105555
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorWang, Pen_US
dc.creatorXue, Gen_US
dc.creatorLi, Pen_US
dc.creatorKim, Jen_US
dc.creatorSheng, Ben_US
dc.creatorMao, Len_US
dc.date.accessioned2024-04-15T07:35:01Z-
dc.date.available2024-04-15T07:35:01Z-
dc.identifier.isbn978-3-030-61863-6en_US
dc.identifier.isbn978-3-030-61864-3 (eBook)en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10397/105555-
dc.description37th Computer Graphics International Conference, CGI 2020, Geneva, Switzerland, October 20–23, 2020en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer Nature Switzerland AG 2020en_US
dc.rightsThis version of the proceeding paper has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-030-61864-3_31.en_US
dc.subject3D hand pose estimationen_US
dc.subjectAdaptive graph convolutionen_US
dc.subjectDepth imageen_US
dc.titleGHand : a graph convolution network for 3D hand pose estimationen_US
dc.typeConference Paperen_US
dc.identifier.spage374en_US
dc.identifier.epage381en_US
dc.identifier.volume12221en_US
dc.identifier.doi10.1007/978-3-030-61864-3_31en_US
dcterms.abstractVision-based 3D hand pose estimation plays an important role in the field of human-computer interaction. In recent years, with the development of convolutional neural networks (CNN), the field of 3D hand pose estimation has made a great progress, but there is still a long way to go before the problem is solved. Although recent studies based on CNN networks have greatly improved the recognition accuracy, they usually only pay attention on the regression ability of the network itself, and ignore the structural information of the hands, thus leads to a low accuracy in contrast. In this paper we proposed a new hand pose estimation network, which can fully learn the structural information of hands through an adaptive graph convolutional neural network. The experiment on the public dataset shows the accuracy of our graph convolution network exceeds the SOTA methods in 3D hand pose estimation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationLecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics), 2020, v. 12221, p. 374-381en_US
dcterms.isPartOfLecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics)en_US
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85096517216-
dc.relation.conferenceComputer Graphics International Conference [CGI]en_US
dc.identifier.eissn1611-3349en_US
dc.description.validate202402 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCOMP-0439-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Research and Development Program of China; National Natural Science Foundation of China; Science and Technology Commission of Shanghai Municipalityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS43142558-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Li_Ghand_Graph_Convolution.pdfPre-Published version1.51 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

100
Last Week
6
Last month
Citations as of Nov 30, 2025

Downloads

44
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.