Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105514
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.creatorChen, Y-
dc.creatorKo, T-
dc.creatorShang, L-
dc.creatorChen, X-
dc.creatorJiang, X-
dc.creatorLi, Q-
dc.date.accessioned2024-04-15T07:34:48Z-
dc.date.available2024-04-15T07:34:48Z-
dc.identifier.urihttp://hdl.handle.net/10397/105514-
dc.language.isoenen_US
dc.publisherInternational Speech Communication Associationen_US
dc.rightsCopyright © 2020 ISCAen_US
dc.rightsThe following publication Chen, Y., Ko, T., Shang, L., Chen, X., Jiang, X., Li, Q. (2020) An Investigation of Few-Shot Learning in Spoken Term Classification. Proc. Interspeech 2020, 2582-2586, doi: 10.21437/Interspeech.2020-2568 is available at https://www.isca-speech.org/archive/interspeech_2020/chen20j_interspeech.html.en_US
dc.subjectConvolutional neural networken_US
dc.subjectFew-shot classificationen_US
dc.subjectMeta learningen_US
dc.subjectSpoken term classificationen_US
dc.titleAn investigation of few-shot learning in spoken term classificationen_US
dc.typeConference Paperen_US
dc.identifier.spage2582-
dc.identifier.epage2586-
dc.identifier.doi10.21437/Interspeech.2020-2568-
dcterms.abstractIn this paper, we investigate the feasibility of applying few-shot learning algorithms to a speech task. We formulate a user-defined scenario of spoken term classification as a few-shot learning problem. In most few-shot learning studies, it is assumed that all the N classes are new in a N-way problem. We suggest that this assumption can be relaxed and define a N+M-way problem where N and M are the number of new classes and fixed classes respectively. We propose a modification to the Model-Agnostic Meta-Learning (MAML) algorithm to solve the problem. Experiments on the Google Speech Commands dataset show that our approach1 outperforms the conventional supervised learning approach and the original MAML.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH 2020, 25-29 October 2020, Shanghai, China, p. 2582-2586-
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85098174751-
dc.relation.conferenceConference of the International Speech Communication Association [INTERSPEECH],-
dc.description.validate202402 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCOMP-0206en_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS49985484en_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
chen20j_interspeech.pdf396.93 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

139
Last Week
6
Last month
Citations as of Nov 9, 2025

Downloads

56
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

15
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.