Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105493
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.creatorChen, L-
dc.creatorWei, Z-
dc.creatorLi, J-
dc.creatorZhou, B-
dc.creatorZhang, Q-
dc.creatorHuang, X-
dc.date.accessioned2024-04-15T07:34:41Z-
dc.date.available2024-04-15T07:34:41Z-
dc.identifier.isbn978-1-952148-27-9-
dc.identifier.urihttp://hdl.handle.net/10397/105493-
dc.description28th International Conference on Computational Linguistics, December 8-13, 2020, Barcelona, Spain (Online)en_US
dc.language.isoenen_US
dc.publisherAssociation for Computational Linguistics (ACL)en_US
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://creativecommons.org/licenses/by/4.0/.en_US
dc.rightsThe following publication Lei Chen, Zhongyu Wei, Jing Li, Baohua Zhou, Qi Zhang, and Xuanjing Huang. 2020. Modeling Evolution of Message Interaction for Rumor Resolution. In Proceedings of the 28th International Conference on Computational Linguistics, pages 6377–6387, Barcelona, Spain (Online). International Committee on Computational Linguistics is available at https://doi.org/10.18653/v1/2020.coling-main.561.en_US
dc.titleModeling evolution of message interaction for rumor resolutionen_US
dc.typeConference Paperen_US
dc.identifier.spage6377-
dc.identifier.epage6387-
dc.identifier.doi10.18653/v1/2020.coling-main.561-
dcterms.abstractPrevious work for rumor resolution concentrates on exploiting time-series characteristics or modeling topology structure separately. However, how local interactive pattern affects global information assemblage has not been explored. In this paper, we attempt to address the problem by learning evolution of message interaction. We model confrontation and reciprocity between message pairs via discrete variational autoencoders which effectively reflects the diversified opinion interactivity. Moreover, we capture the variation of message interaction using a hierarchical framework to better integrate information flow of a rumor cascade. Experiments on PHEME dataset demonstrate our proposed model achieves higher accuracy than existing methods.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn Proceedings of the 28th International Conference on Computational Linguistics, p. 6377-6387. Barcelona, Spain : International Committee on Computational Linguistics, 2020-
dcterms.issued2020-
dc.relation.ispartofbookProceedings of the 28th International Conference on Computational Linguistics-
dc.relation.conferenceInternational Conference on Computational Linguistics [COLING]-
dc.description.validate202402 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCOMP-0158en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; National Social Science Foundation; National Key Research and Development Plan; Science and Technology Commission of Shanghai Municipality Granten_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50290429en_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
2020.coling-main.561.pdf1.23 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

208
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

133
Citations as of Nov 30, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.