Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105471
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorLi, Zen_US
dc.creatorChan, TNen_US
dc.creatorYiu, MLen_US
dc.creatorJensen, CSen_US
dc.date.accessioned2024-04-15T07:34:34Z-
dc.date.available2024-04-15T07:34:34Z-
dc.identifier.isbn978-3-89318-084-4en_US
dc.identifier.urihttp://hdl.handle.net/10397/105471-
dc.language.isoenen_US
dc.publisherOpenProceedings.orgen_US
dc.rights© 2021 Copyright held by the owner/author(s). Published in Proceedings of the 24th International Conference on Extending Database Technology (EDBT), Nicosia, ISBN 978-3-89318-084-4 on OpenProceedings.org. Distribution of this paper is permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0. (https://creativecommons.org/licenses/by-nc-nd/4.0/)en_US
dc.rightsThe following publication Li, Z., Chan, T. N., Yiu, M. L., & Jensen, C. S. (2020). Polyfit: Polynomial-based indexing approach for fast approximate range aggregate queries. In Proceedings of the 24th International Conference on Extending Database Technology (EDBT), Nicosia is available at https://doi.org/10.5441/002/edbt.2021.22.en_US
dc.titlePolyFit : polynomial-based indexing approach for fast approximate range aggregate queriesen_US
dc.typeConference Paperen_US
dc.identifier.spage241en_US
dc.identifier.epage252en_US
dc.identifier.doi10.5441/002/edbt.2021.22en_US
dcterms.abstractRange aggregate queries find frequent application in data analytics. In some use cases, approximate results are preferred over accurate results if they can be computed rapidly and satisfy approximation guarantees. Inspired by a recent indexing approach, we provide means of representing a discrete point data set by continuous functions that can then serve as compact index structures. More specifically, we develop a polynomial-based indexing approach, called PolyFit, for processing approximate range aggregate queries. PolyFit is capable of supporting multiple types of range aggregate queries, including COUNT, SUM, MIN and MAX aggregates, with guaranteed absolute and relative error bounds. Experiment results show that PolyFit is faster and more accurate and compact than existing learned index structures.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvances in Database Technology - EDBT 2021 : 24th International Conference on Extending Database Technology, Nicosia, Cyprus, March 23-26, 2021, proceedings, p. 241-252en_US
dcterms.issued2021-
dc.identifier.scopus2-s2.0-85113717020-
dc.relation.conferenceInternational Conference on Extending Database Technology [EDBT]en_US
dc.description.validate202402 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCOMP-0091-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS54685118-
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Li_PolyFit_Polynomial-based_Indexing.pdf2.13 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

51
Citations as of Apr 14, 2025

Downloads

15
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

2
Citations as of Sep 12, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.