Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105451
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.creatorJi, L-
dc.creatorWei, Z-
dc.creatorLi, J-
dc.creatorZhang, Q-
dc.creatorHuang, X-
dc.date.accessioned2024-04-15T07:34:27Z-
dc.date.available2024-04-15T07:34:27Z-
dc.identifier.isbn978-1-954085-46-6-
dc.identifier.urihttp://hdl.handle.net/10397/105451-
dc.description2021 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Online, June 6-11, 2021en_US
dc.language.isoenen_US
dc.publisherAssociation for Computational Linguistics (ACL)en_US
dc.rights©2021 Association for Computational Linguisticsen_US
dc.rightsThis publication is licensed on a Creative Commons Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)en_US
dc.rightsThe following publication Lu Ji, Zhongyu Wei, Jing Li, Qi Zhang, and Xuanjing Huang. 2021. Discrete Argument Representation Learning for Interactive Argument Pair Identification. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 5467–5478, Online. Association for Computational Linguistics is available at https://doi.org/10.18653/v1/2021.naacl-main.431.en_US
dc.titleDiscrete argument representation learning for interactive argument pair identificationen_US
dc.typeConference Paperen_US
dc.identifier.spage5467-
dc.identifier.epage5478-
dc.identifier.doi10.18653/v1/2021.naacl-main.431-
dcterms.abstractIn this paper, we focus on identifying interactive argument pairs from two posts with opposite stances to a certain topic. Considering opinions are exchanged from different perspectives of the discussing topic, we study the discrete representations for arguments to capture varying aspects in argumentation languages (e.g., the debate focus and the participant behavior). Moreover, we utilize hierarchical structure to model post-wise information incorporating contextual knowledge. Experimental results on the large-scale dataset collected from CMV show that our proposed framework can significantly outperform the competitive baselines. Further analyses reveal why our model yields superior performance and prove the usefulness of our learned representations.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p. 5467-5478. Stroudsburg, PA, USA: Association for Computational Linguistics (ACL), 2021-
dcterms.issued2021-
dc.relation.ispartofbookProceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies-
dc.relation.conferenceAnnual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies [NAACL-HLT]-
dc.description.validate202402 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCOMP-0029en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextStartup Funden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50290378en_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
2021.naacl-main.431.pdf701.79 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

205
Last Week
3
Last month
Citations as of Nov 30, 2025

Downloads

68
Citations as of Nov 30, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.