Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105128
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Design-
dc.creatorZhao, Ten_US
dc.creatorSiu, KWMen_US
dc.creatorSun, Hen_US
dc.date.accessioned2024-04-03T01:46:25Z-
dc.date.available2024-04-03T01:46:25Z-
dc.identifier.isbn978-3-319-58561-1 (Softcover)en_US
dc.identifier.isbn978-3-319-58562-8 (eBook)en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10397/105128-
dc.description9th International Conference on Social Computing and Social Media, SCSM 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9-14, 2017en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer International Publishing AG 2017en_US
dc.rightsThis version of the proceeding paper has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-319-58562-8_35.en_US
dc.subjectCase studyen_US
dc.subjectDesign modelen_US
dc.subjectDesign opportunityen_US
dc.subjectDesign researchen_US
dc.subjectSocial network serviceen_US
dc.subjectSubwayen_US
dc.titleDiscovering subway design opportunities using social network data : the image-need-design opportunity modelen_US
dc.typeConference Paperen_US
dc.description.otherinformationTitle on author’s file: "Using Social Network Data for Subway Life Design: The Image-Need-Design Opportunity Model"en_US
dc.identifier.spage451en_US
dc.identifier.epage466en_US
dc.identifier.volume10283en_US
dc.identifier.doi10.1007/978-3-319-58562-8_35en_US
dcterms.abstractOnline social networks have permeated into people’s daily lives. An increasing number of people from diverse backgrounds have expressed their viewpoints, feelings, and needs through the internet. Data from social network is widely used in every kind of academic social science. This study aims to apply data from online social networks into subway design work and promote a new way to discover design chance. By considering the Hong Kong, Shenzhen, and Tokyo subways as case studies, this study attempts to capture the images of subways. Through comparing the data from social network with users’ needs level, an updated Image-Need-Design Opportunity model with a cyclical process is created at theoretical level. This research provides an insightful reference for future design work and aims to evoke in researchers a desire to excavate potential design information from online social networks.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationLecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics), 2017, v. 10283, p. 451-466en_US
dcterms.isPartOfLecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics)en_US
dcterms.issued2017-
dc.identifier.scopus2-s2.0-85025171562-
dc.relation.conferenceInternational Conference on Social Computing and Social Media [SCSM]-
dc.identifier.eissn1611-3349en_US
dc.description.validate202403 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberSD-0246-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS9600094-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Siu_Discovering_Subway_Design.pdfPre-Published version2.46 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

101
Last Week
4
Last month
Citations as of Nov 30, 2025

Downloads

60
Citations as of Nov 30, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.