Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104933
PIRA download icon_1.1View/Download Full Text
Title: Bi-global stability of supersonic backward-facing step flow
Authors: Yu, K 
Hao, J 
Wen, CY 
Xu, J
Issue Date: 25-Feb-2024
Source: Journal of fluid mechanics, 25 Feb. 2024, v. 981, A29
Abstract: Supersonic backward-facing step (BFS) flow is numerically studied using direct numerical simulation (DNS) and global stability analysis (GSA) with a free stream Mach number of 2.16 and a Reynolds number of 7.938 × 105 based on the flat-plate length L and free stream conditions. Two-dimensional BFS flow becomes unstable to three-dimensional perturbations as the step height h exceeds a certain value, while no two-dimensionally unstable mode is found. Global instability occurs with the fragmentation of the primary separation vortex downstream of the step. Two stationary modes and one oscillatory unstable mode are obtained at a supercritical ratio of L/h = 32.14, among which the two stationary modes originate from the coalescence of a pair of conjugate modes. The most unstable mode manifests itself as streamwise streaks in the reattached boundary layer, which is similar to that in shock-induced separated flow, although the flow separation mechanisms are different. Without introducing any external disturbances, the DNS captures the preferred perturbations and produces a growth rate in agreement with the GSA prediction in the linear growth stage. In the quasi-steady stage, the secondary separation vortex breaks up into several small bubbles, and the number of streamwise streaks is doubled. A low-frequency unsteadiness that may be associated with the oscillatory mode is also present.
Keywords: Absolute/convective instability
Separated flows
Supersonic flow
Publisher: Cambridge University Press
Journal: Journal of fluid mechanics 
ISSN: 0022-1120
EISSN: 1469-7645
DOI: 10.1017/jfm.2024.76
Rights: © The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
The following publication Yu, K., Hao, J., Wen, C. Y., & Xu, J. (2024). Bi-global stability of supersonic backward-facing step flow. Journal of Fluid Mechanics, 981, A29 is available at https://doi.org/10.1017/jfm.2024.76.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Yu_Bi-Global_Stability_Supersonic.pdf3.25 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

47
Citations as of Jul 7, 2024

Downloads

10
Citations as of Jul 7, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.