Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104824
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.creatorWan, SKen_US
dc.creatorSong, Hen_US
dc.date.accessioned2024-03-05T01:26:45Z-
dc.date.available2024-03-05T01:26:45Z-
dc.identifier.issn0160-7383en_US
dc.identifier.urihttp://hdl.handle.net/10397/104824-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2018 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Wan, S. K., & Song, H. (2018). Forecasting turning points in tourism growth. Annals of Tourism Research, 72, 156-167 is available at https://doi.org/10.1016/j.annals.2018.07.010.en_US
dc.subjectCombined probability forecasten_US
dc.subjectHong Kongen_US
dc.subjectQuadratic probability scoreen_US
dc.subjectTourism demanden_US
dc.titleForecasting turning points in tourism growthen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage156en_US
dc.identifier.epage167en_US
dc.identifier.volume72en_US
dc.identifier.doi10.1016/j.annals.2018.07.010en_US
dcterms.abstractTourism demand exhibits growth cycles, and it is important to forecast turning points in these growth cycles to minimise risks to destination management. This study estimates logistic models of Hong Kong tourism demand, which are then used to generate both short- and long-term forecasts of tourism growth. The performance of the models is evaluated using the quadratic probability score and hit rates. The results show that the ways in which this information is used are crucial to the models’ predictive power. Further, we investigate whether combining probability forecasts can improve predictive accuracy, and find that combination approaches, especially nonlinear combination approaches, are sensitive to the quality of forecasts in the pool. In addition, model screening can improve forecasting performance.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAnnals of tourism research, Sept. 2018, v. 72, p. 156-167en_US
dcterms.isPartOfAnnals of tourism researchen_US
dcterms.issued2018-09-
dc.identifier.scopus2-s2.0-85050757399-
dc.identifier.eissn1873-7722en_US
dc.description.validate202312 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberSHTM-0601-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNatural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20900295-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Song_Forecasting_Turning_Points.pdfPre-Published version1.2 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

81
Last Week
3
Last month
Citations as of Dec 21, 2025

Downloads

84
Citations as of Dec 21, 2025

SCOPUSTM   
Citations

57
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

46
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.