Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104772
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Management-
dc.creatorSong, Hen_US
dc.creatorWen, Len_US
dc.creatorLiu, Cen_US
dc.date.accessioned2024-03-05T01:26:21Z-
dc.date.available2024-03-05T01:26:21Z-
dc.identifier.issn0160-7383en_US
dc.identifier.urihttp://hdl.handle.net/10397/104772-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2018 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Song, H., Wen, L., & Liu, C. (2019). Density tourism demand forecasting revisited. Annals of Tourism Research, 75, 379-392 is available at https://doi.org/10.1016/j.annals.2018.12.019.en_US
dc.subjectBootstrapen_US
dc.subjectDensity forecastsen_US
dc.subjectScoring rulesen_US
dc.subjectTourism demanden_US
dc.titleDensity tourism demand forecasting revisiteden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage379en_US
dc.identifier.epage392en_US
dc.identifier.volume75en_US
dc.identifier.doi10.1016/j.annals.2018.12.019en_US
dcterms.abstractThis study used scoring rules to evaluate density forecasts generated by different time-series models. Based on quarterly tourist arrivals to Hong Kong from ten source markets, the empirical results suggest that density forecasts perform better than point forecasts. The seasonal autoregressive integrated moving average (SARIMA) model was found to perform best among the competing models. The innovation state space models for exponential smoothing and the structural time-series models were significantly outperformed by the SARIMA model. Bootstrapping improved the density forecasts, but only over short time horizons.-
dcterms.abstractThis article also launches the Annals of Tourism Research Curated Collection on Tourism Demand Forecasting, a special selection of research in this field.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAnnals of tourism research, Mar. 2019, v. 75, p. 379-392en_US
dcterms.isPartOfAnnals of tourism researchen_US
dcterms.issued2019-03-
dc.identifier.scopus2-s2.0-85060110303-
dc.identifier.eissn1873-7722en_US
dc.description.validate202312 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberSHTM-0464-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; International Doctoral Innovation Centre; Ningbo Education Bureau; Ningbo Science and Technology Bureau; University of Nottinghamen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS24087391-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Song_Density_Tourism_Demand.pdfPre-Published version1.46 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

78
Last Week
0
Last month
Citations as of Nov 30, 2025

Downloads

46
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

29
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

27
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.