Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104757
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Management-
dc.creatorWen, L-
dc.creatorLiu, C-
dc.creatorSong, H-
dc.date.accessioned2024-03-05T01:26:15Z-
dc.date.available2024-03-05T01:26:15Z-
dc.identifier.issn1354-8166-
dc.identifier.urihttp://hdl.handle.net/10397/104757-
dc.language.isoenen_US
dc.publisherSAGE Publicationsen_US
dc.rightsThis is the accepted version of the publication "Wen, L., Liu, C., & Song, H. (2019). Forecasting tourism demand using search query data: A hybrid modelling approach. Tourism Economics, 25(3), 309-329. Copyright © 2018 (The Author(s)). DOI: 10.1177/1354816618768317.”en_US
dc.subjectArtificial neural networken_US
dc.subjectHybrid specificationen_US
dc.subjectNon-linear modelen_US
dc.subjectSearch query dataen_US
dc.subjectTourism forecastingen_US
dc.titleForecasting tourism demand using search query data : a hybrid modelling approachen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage309-
dc.identifier.epage329-
dc.identifier.volume25-
dc.identifier.issue3-
dc.identifier.doi10.1177/1354816618768317-
dcterms.abstractSearch query data have recently been used to forecast tourism demand. Linear models, particularly autoregressive integrated moving average with exogenous variable models, are often used to assess the predictive power of search query data. However, they are limited by their inability to model non-linearity due to their pre-assumed linear forms. Artificial neural network models could be used to model non-linearity, but mixed results indicate that their application is not appropriate in all situations. Therefore, this study proposes a new hybrid model that combines the linear and non-linear features of component models. The model outperforms other models when forecasting tourist arrivals in Hong Kong from mainland China, thus demonstrating the advantage of adopting hybrid models in forecasting tourism demand with search query data.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTourism economics, May 2019, v. 25, no. 3, p. 309-329-
dcterms.isPartOfTourism economics-
dcterms.issued2019-05-
dc.identifier.scopus2-s2.0-85065718038-
dc.identifier.eissn2044-0375-
dc.description.validate202401 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberSHTM-0436en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS24096229en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Song_Forecasting_Tourism_Demand.pdfPre-Published version666.65 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

92
Last Week
4
Last month
Citations as of Nov 30, 2025

Downloads

222
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

64
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

55
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.