Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/104589
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorYuen, FCCen_US
dc.creatorChoy, KLen_US
dc.creatorLam, HYen_US
dc.date.accessioned2024-02-05T08:51:25Z-
dc.date.available2024-02-05T08:51:25Z-
dc.identifier.isbn978-94-6252-243-5en_US
dc.identifier.urihttp://hdl.handle.net/10397/104589-
dc.description2016 6th International Workshop of Advanced Manufacturing and Automation (IWAMA2016), University of Manchester, UK, 10 -11 November 2016en_US
dc.language.isoenen_US
dc.publisherAtlantis Pressen_US
dc.rights© 2016, the Authors. Published by Atlantis Press. This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).en_US
dc.rightsThe following publication Yuen, F. C., Choy, K. L., & Lam, H. Y. (2016, November). Vendor Consolidation for a Small Appliance Company. In 6th International Workshop of Advanced Manufacturing and Automation (pp. 75-80). Atlantis Press is available at https://doi.org/10.2991/iwama-16.2016.14.en_US
dc.subjectVendor consolidationen_US
dc.subjectSupplier base reductionen_US
dc.subjectAHPen_US
dc.subjectGAen_US
dc.subjectANNen_US
dc.subjectMathematical modellingen_US
dc.titleVendor consolidation for a small appliance companyen_US
dc.typeConference Paperen_US
dc.identifier.spage75en_US
dc.identifier.epage80en_US
dc.identifier.doi10.2991/iwama-16.2016.14en_US
dcterms.abstractVendor consolidation is becoming an important management focus in recent years due to the need to sharpen cost performance to increase competition in the fast changing business environment. Vendor consolidation can assist company to streamline its operation, concentrate buying power and reduce purchase price and transaction cost. This paper proposed an intelligent vendor consolidation support system (VCSS) by integrating Analytical Hierarchical Process (AHP), Genetic Algorithms (GA) and Artificial Neural Network (ANN) to rank vendors according to the predefined elimination criteria and the performance of individual vendors in each area of the criteria. With this ranking of vendors, the vendors with inferior performance will be isolated and eliminated to achieve the target number of vendors.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of the 6th International Workshop of Advanced Manufacturing and Automation, University of Manchester, UK, 10-11 November 2016, p. 75-80en_US
dcterms.issued2016-
dc.relation.ispartofbookProceedings of the 6th International Workshop of Advanced Manufacturing and Automationen_US
dc.relation.conferenceInternational Workshop of Advanced Manufacturing and Automation [IWAMA]en_US
dc.description.validate202402 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberISE-1036-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS9642333-
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
25862223.pdf1.35 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

70
Citations as of May 11, 2025

Downloads

26
Citations as of May 11, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.